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Abstract

Low-tension cable problems are particularly complex as linear solutions are unobtainable in
most cases, due to the lack of a meaningful static configuration. By contrast, the dynamics
of taut cables are only weakly nonlinear.

First, the three-dimensional nonlinear equations of motion and compatibility relations
are formulated for a cable with bending stiffness. Forces in bending are included to provide
the necessary physical mechanism for energy transfer across isolated points of zero tension
and to ensure a smooth cable configuration.

The mechanisms for low-tension response to excitation are explored by considering the
limiting case of a cable with zero initial tension, subject to an impulsive force at one end.
The three-dimensional equations show the development of impulsive tension. The intensity
of the tension and the velocity components depend exclusively on the initial curvature and
are independent of the geometric torsion. In addition, singularities are found to develop at
points of curvature discontinuity. Incorporating the cable's bending stiffness removes these
singularities by ensuring smooth curvature. However, sustained boundary layers are found
to develop, demonstrating the importance of the underlying physical mechanism.

The transition from taut to low-tension behavior is examined through an analysis of the
dynamics of a hanging chain, driven by planar harmonic excitation at the top. For moder-
ately large excitation amplitudes, asymptotic results demonstrate the existence of distinct
regions of stable two-dimensional and stable three-dimensional response, as a function of
frequency, as well as a distinct region in which all steady state solutions are found to be
unstable. Numerical solutions of the fully nonlinear equations are in close agreement with
the asymptotic results. Numerical results for even larger excitation amplitudes show that
large impulse-like tension forces develop which cause the chain to lose tension over a region
adjacent to its freely hanging end, and then collapse. The transition from low to high ten-
sion regions is clearly demonstrated, with low tension effects being confined to the lower
portion of the chain.

Experimental studies were conducted using a chain, 3/8 inches in diameter and 5.8
feet in length, which confirm qualitatively and quantitatively the theoretical and numerical
predictions.

Thesis Supervisor: Micheal S. Triantafyllou
Title: Professor of Ocean Engineering
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Chapter 1

Introduction

Cables are used extensively as structural members for many applications, ranging from

suspension bridge hangers to kite string. As such, the study of cable dynamics has a long

history, dating back to the study of musical strings by Pythagoras. Nonetheless, as new

applications for cable use arise so do questions about their dynamics.

The use of cables is prevalent throughout the offshore industry. Offshore mooring sys-

tems, towed acoustic arrays, and remotely operated vehicles are just a few of the offshore

systems that strongly depend on cables. In addition, as the exploration and recovery of

oil reserves continues to be extended to greater water depths, the mooring and production

systems of the required deepwater structures, either for semi-submersibles or tension-leg-

platforms (TLP), are almost exclusively comprised of slender tubular members, including:

mooring cables; production risers; steel catenary pipelines; and TLP tendons. Due to the

length of these members, often times in excess of 3000 feet, the nominal bending stiffness

is small and, therefore, their dynamics more closely resemble those of a cable than a beam.

Understanding the dynamics of these cable systems is crucial for operational and safety

concerns. However, often the physics involved in these problems are very complicated and

difficult to solve. These complications exist for many reasons. First, the structural dynamics

problem, in itself, is often nonlinear. Second, complications arise due to hydrodynamic

loads, I.e. modelling added mass and nonlinear drag forces, as well as complex flRuid problems

such as vortex shedding and interference effects. Therefore, the complete nonlinear fluid-

structure interaction problem becomes extremely involved.
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Cable problems can be separated into a wide range of categories, but, for the purposes

of this study we make the primary distinction between highly tensioned (taut) cables and

low-tension cables. Herein we focus our attention on the later class of problems and use the

term low-tension to refer to problems in which the dynamic tension equals or exceeds the

static tension. Another suitable definition is that for low-tension cables the ratio of the end

forces to the sum of distributed forces is of order one. This phenomena can be restricted to

finite regions, for example near the free end of a cable hanging freely under its own weight,

or may span the entire cable length.

Most applications call for taut cables and a substantial amount of research has been

conducted in this area (for a review see [25], [68]). Low-tension cables, however, have

recently seen increased use largely due to the advent of synthetic cables for which the

weight is much less than that of steel cables of equivalent strength, and thus are close to

neutrally buoyant in water. Typical applications for low-tension cables include neutrally

buoyant marine cables supporting hydrophones and space tethers supporting instrument

packages from satellites [33]. In addition, the use of remotely operated vehicle tethers and

other cables which involve fiber optic lines for transporting communication signals and

power has created systems in which, by necessity, the tension must be kept low.

A different class of problems can be described as low tension applications as well. These

include, for example, long towed arrays which, during sharp maneuvers, may lose tension

entirely, operating as a low-tension cable for periods of time even though the initial tension

may be high.

Low tension problems are particularly complex because, by definition, the dynamic

tension is of the same order as the static tension. Therefore, these problems cannot be

simplified by linearizing the tension. In addition, the dynamic tension may act to cancel

the static tension over a portion of the loading cycle, subsequently giving rise to impulse-like

tension forces.

Due to the relatively small restoring force, large amplitude displacements may occur,

thus giving preeminence to the effects of geometric nonlinearities. The onset of large dis-

placements also prevents developing solutions which are based on linearizing the equations

of motion about some static configuration as a meaningful static configuration does not
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exist. The nonlinear dynamics of taut cables, on the other hand, are only weakly nonlinear

[20].

Aside from these difficulties, the dynamics of low-tension cables are further complicated

by the fact that near isolated points of zero tension, for example near the free end of a towed

array, energy travels at very small speed because the speed of propagation is proportional to

the square-root of the tension [56]. As such, obtaining solutions in these regions is often very

difficult, or even impossible. Dowling [17] and then Triantafyllou and Triantafyllou [74] have

shown that it is essential to introduce the bending stiffness of the cable near zero tension

points. The resulting solutions were found to contain boundary layers, demonstrating the

importance of the underlying physical mechanism.

There are very few references in the literature on the subject of low-tension cables.

Leonard [36] considered the dynamics of low-tension cables by formulating the problem for

a slack cable. By letting the ratio of the cable weight to the static tension become moderately

large, he investigated the nonlinear response caused by the presence of a moderately large

dynamic tension. More recently, Triantafyllou and Howell have published several papers in

this area dealing with many of the topics addressed herein (see [71], [72], [73]).

In chapter 2 we begin our analysis of low tension cables by deriving the fully nonlinear

three-dimensional cable governing equations and compatibility relations. These equations

form the mathematical basis of this investigation. The results mentioned previously suggest

that bending stiffness plays an important in low-tension dynamics, especially near isolated

points of zero tension. As such, we seek to incorporate the effects of bending stiffness, and

torsion, in the equations of motion. Therefore, the equations derived herein can be viewed

as a more general formulation than typically found in the past.

As we shall show, the equations of motion for a cable are nonlinear and strongly cou-

pled. Analytic solutions, therefore, are difficult to obtain, except in simplified cases and

numerical approximation techniques are often necessary. In chapter 3 previously developed

cable simulation algorithms are discussed and two novel numerical techniques, specifically

developed with low-tension applications in mind, are detailed.

In chapter 4 we consider cables under zero initial tension, subject to impulsive loads, to

gain a better understanding of certain fundamental mechanisms of cable response intrinsic
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to low-tension behavior. The equations of cable motion under impulsive loading are de-

rived and solutions are presented for a variety of initial configurations. Both analytic and

numerical results are shown.

The transition between high tension and low tension behavior is considered in chapter

5. Toward this end, the dynamics of a chain hanging freely under its own weight, driven

harmonically at the top, are studied. The hanging chain exhibits both high tension be-

havior (near the top boundary) and low-tension behavior (near the free end) and therefore

can be seen as a system ideally suited for the analysis of both tension regions, as well as

the transition between regions. Asymptotic, numerical, and experimental techniques were

implemented to obtain solutions and results are presented and discussed for each of these

methods.

In chapters 4 and 5 solutions are found under the assumption that the cable, or chain,

is inextensible. In chapter 6, the effects of elasticity are incorporated and the transition

between inelastic behavior and elastic behavior is considered.

Applications of the methodology are addressed in chapter 7. In particular, we look

at the coupled dynamics of a remotely operated vehicle and tether system. The tether is

assumed to be neutrally buoyant and the cable simulation algorithm discussed in chapter 3

is used to model its dynamics. To study the vehicle-tether problem, the cable algorithm was

coupled with a vehicle simulation routine and results are presented for several operational

maneuvers.

Finally, in chapter 8 we summarize the results and form some conclusions about the

dynamics of low-tension cables. Recommendations for future areas of research are also

given.
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Chapter 2

Three-Dimensional Nonlinear

Cable Equations

2.1 Introduction

In this chapter the dynamic equations which form the basis of the mathematical model of

the cable are derived. The three-dimensional cable equations of motion were derived in

cartesian coordinates by Routh [59] in 1860. Derivations of these equations in so-called

natural or lagrangian coordinates, fixed on the cable, have also been done by many authors,

including Bliek [6]. The equations derived here extend from those presented by other

authors who address cable dynamics in that forces in bending are retained. As a result,

the equations presented herein constitute a more accurate model for problems in which the

cable tension is small, and therefore are applicable for a wider range of tension magnitudes

than previous derivations. It should be noted that Love [40], and then Landau and Lifshitz

[35], formulated, in cartesian coordinates, fundamentally similar equations by considering

the dynamics of thin rods.

Several coordinate systems can be used to study cable dynamics. A lagrangian coordi-

nate system has two primary advantages over a fixed cartesian reference frame. First, it is

more straight-forward to describe the hydrodynamic forces in body-fixed coordinates and

secondly, results are more easily interpreted. Therefore, we adopt a lagrangian approach

herein and, as such, the coordinate system is moving in space and time.
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2.2 Kinematics in 3-D

We consider the cable as a single curvilinear line. Let s denote the unstretched lagrangian

coordinate along the cable, measured from the origin of the coordinate system to a material

point on the cable. The origin is chosen to coincide with a boundary, such as the free end

of a towed array, and is denoted as a = 0. The other endpoint is denoted as a = L, where

L is the unstretched cable length.

The cable is considered to be extensible and as such we define p(t, a) as the stretched

distance to the same material point s, at a time t. The change in length due to elasticity is

given by the strain e. We define the longitudinal strain as

e= lm bp6-63 = dp~
68ý-0 bs ds-

where 6s is the unstretched length of an incremental segment and 6p is the stretched length.

The cable cross-sectional area is also altered due to elongation. Following Goodman and

Breslin [191 we make the assumption that the cable has Poisson's ratio 1, i.e. the volume

of the cable is preserved after stretching [66]. This value is correct for synthetic materials.

Metallic cables have a Poisson ratio closer to •, so this constitutes an approximation. Also,

many wire and synthetic cables have a far more complex structure, and there response

involves relative motion between filaments as well as extension. Therefore the chosen value

is meant in an average, equivalent sense. As such, if we assume that the cable is of circular

cross-section we can express the change in the cable diameter d due to stretching as

d = d,(1 + e)i (2.1)

Note that here we have used the subscript a to denote a parameter in a stretched condition.

This notation will be used throughout this chapter.

The coordinate system is resolved into the tangent, normal, and binormal directions,

given by the unit vectors i, ft, and 6, respectively. The tangential direction is defined as

tangent to the cable axis, pointing in the direction of increasing a. The normal direction

is perpendicular to i and the binormal direction is defined such that the system of vectors

18
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Figure 2.1: Coordinate systems and Euler rotation sequence.

(A, !,b) is orthogonal and right-handed.

The transformation between the lagrangian coordinates z, y, and z and the fixed co-

ordinates X, Y, and Z is accomplished through a set of rotations known as Euler angles.

The particular choice of Euler angles is arbitrary in the sense that any rotation sequence

that provides a unique one-to-one transformation between points in the fixed and moving

coordinate systems is valid. For the sake of generality, when possible equations will be

expressed in a form which is independent of the Euler rotations chosen.

The following rotation sequence has been chosen for this analysis. First, a rotation

about the Z axis by the angle 0 is performed. Next, a rotation about the resulting Y' axis

by the angle e is made to bring the X' axis in line with the tangent direction. Finally, a

rotation about the Z' axis by the angle 0 is conducted to fix the orientation of the normal

and binormal directions. This rotation sequence is shown in figure 2.1.
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These rotations can be expressed in matrix form as follows:

y/ =r Y

z z

where [Cos 0Cose sin 0 Cos 9 -s$in 19
r- cossin sinob-sinocoo sin sin~sin-+cose#cose oeOsino

cos4Osin cos+ +sin OsinO sinq•sinecos -cosq•uinO osfcosO

It should be noted that it is possible to more formally define the normal direction using

the so-called principal directions [21], as done by Bliek (6]. The formulation presented here

was selected because it is more general when material torsion is involved, and provides

greater flexibility in deriving and expressing forces in bending. However, because Frenet's

formulas are not applicable to this coordinate -system, an additional constraint must be

imposed to formally define the orientation of the normal and binormal directions. This

constraint will be addressed in the discussion of torsional effects.

Expressions for the time and spatial derivatives are complicated to some degree by the

selection of a lagrangian coordinate system. This is due to the fact that in addition to

the evolution of the vector quantity of interest, the coordinate system itself also varies in

time and space. This can be shown for the arbitrary vector 9(tQ, a). Herein we employ the

subscript notation (1, 2,3) to denote the variables in the (i, ft,S) directions, respectively and

express 0 as follows:

C = G;,+ 0 2 A + G3 1. (2.2)

First consider the time variation of d. Expanding the expression for the time derivative

gives

SDd Od ci Oft Ab
Dt : +Gi t+G2 -Ft +GaT. (2.3)
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This expression for the so-called substantial or material derivative can be expressed as

5-D -t + 0 ;x G, (2.4)

where Cy is the angular velocity vector. Physically, this vector represents the time rate

change of the local coordinate system about the X, y, and z axes. The angular velocity

vector is expressed as follows:

,• = Wi1+ "-2 h + ,3  (2.5)

where, in terms of the selected Euler angles

=0 0-- sin 0wz= Ot Ot
0o60

W2 = 0- cos 0, + -cos 0 sin,/
0 s 00

W3 = -cos -cos - sin•-
Ot

The evaluation of changes in space follows along similar lines and is given by

(2.6)

where

-= t+ 0 2 flt + fl3b. (2.7)

The vector d represents the local curvature of the cable, at the point s, about the local

coordinate system and is expressed in component form using the Euler angles as

00, 04 sin 0

= OCA 0€ Cos !8 sin •2= -cos,+~c21
=a -- scosk--sin 1'.
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Figure 2.2: Incremental cable segment.

2.3 Three-Dimensional Governing Equations

2.3.1 Derivation of governing equations

We begin the derivation of the governing equations by considering a small cable segment of

unstretched length da and stretched length of dp, as shown in figure 2.2. The velocity and

internal force vectors, IV and T, respectively are defined as follows:

1 = vlj+wzfi+V3g (2.8)
f = Tli+T 2 fi+T 3-.

Here T, denotes the tension force while T2 and T3 represent shear forces. We define

as the distributed forces per unit length and m as the unstretched mass per unit length.

Conservation of mass dictates that

m.dp = imd. (2.9)

Applying Newton's law to the cable segment, along with the conservation of mas yields
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DV DT (2.10)j5 7t = D--5 + •1+ e). (.0

We expand the material derivatives in local coordinates to yield

M(L r X1V aý C Xf+L'(l + e). (2.11)

As mentioned, we seek to incorporate internal forces due to bending and torsional stiff-

ness in the cable. As such we must balance the moments imposed on the incremental cable

segment in figure 2.2. Here we define Al and 4 as the internal and distributed moment

vectors. We define the following unstretched quantities: Young's modulus E; shear modulus

G; cable density Pc; sectional second moment I; and polar moment IP.

The unstretched internal moment vector is expressed as

Ai = M i+ M2hh + M3 ! (2.12)

where, assuming the cable is a circular, homogeneous cylinder,

Ai = GIP91l (2.13)

A12 = EIfl2

J13 = Elfl3.

It should be noted that in (2.13) 111 represents the material torsion which, in general, is

different than the geometric torsion. In addition, the mass moment of inertia per unit length

matrix pcI, for a homogeneous cylinder of circular cross-section, is defined as

I, 0 0

PCI 0 I 0

0 0 1

Using equation 2.1, the following relations are found between stretched and unstretched
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quantities:

,A] -'- ]1 .(1 "+ e)2

pcI = pc,.(l + e)2.

Taking moments about the left-hand side of the cable segment and expressing the results

in terms of unstretched quantities yields:

D[t(AJ D+ [(I e) -e (2.14)

In the limit that dr --o 0 we find the following-

drx -X 0
i jr*

(1 + e) ds

It is unlikely that distributed moment forces will arise in the types of problems addressed

in this study. As such, this term will not be retained. Applying these simplifications to

equation 2.14 provides the set of moment balance equations given below.

D [ pcLZ 1 = D r [ l 1f + X T + )( .5
wt T(1+e)J I s (1+-e) 2J -- xT(1-e) (2.15)

The applied forces acting on the cable are located on the right-hand side of equation

2.10. These forces include the internal forces due to tension and shear, as well as external

loads. The external loads will be considered in detail in section 2.4.

2.3.2 Simplification of governing equations

Before expressing the governing equations in final form, we attempt to simplify the equations

by identifying terms which can be neglected. This will be accomplished by conducting a

nondimensional analysis of equations 2.10 and 2.15. Nondimensional terms will be denoted

throughout this subsection with a subscript n.
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We begin by defining the following nondimensional quantities:

tn = t•

a
•an = Y

Substitution of these nondimensional quantities into equation 2.10 yields

m.• LgL DTn + 1g FA(1 + e) (2.16)

Based on this we define the nondimensional force vectors fn and An as

Tn = T
mgL

mg

Introducing the previously defined nondimensional quantities into equation 2.15 and

neglecting the strain terms associated with the inertial forces yields:

(1+ )P 0 g D•, E1I (D%. 1 e)'a2 8e)
2--e) "D. t - "LV DE.l (12e ) + ix ×•mgL(1 + e)3  (2.17)

Here we have assumed that GIp is on the order of EI. Rearranging terms, we write the

nondimensional equations in bending.

_ • +•e (2.18)X fn•(1 + e)3 _ _#jD -+ 02 Eu-•n(1, + e)2 + 2 0,"L 2.8
Dan Dtn 8n
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where

,61 = toL-' "
LcIm9L3

J8 = "PTJ
12 mL2

In order to determine the relative importance of the variations in strain, we further

investigate the last term on the right-hand side. Assuming a linear stress-strain relation is

applicable, we write

e = T" (2.19)

Using this relation we find

El De I OT,, d2 T,,
mgL3 0S,: AL 2 Os, L 2 08.,

The diameter to length ratio is typically very small. Therefore, based on (2.20) we will

neglect this term.

To compare the relative significance of the bending stiffness term #I and the rotational

inertia term 82 we examine their ratio,

/32 _gpJL
82 gpcL(2.21)

For steel cables, this ratio is on the order of 10-eL meters. For synthetic cables this

ratio may be slightly larger. We should still be justified, however, to neglect the rotational

inertia terms. As such, rotational inertia terms will not be retained.

Next we consider forces in torsion. Neglecting the rotational inertia term in the moment

balance equation about the tangential direction yields

Gp'Os= (2.22)

Equation 2.22 simply states that the torsional rigidity remains constant throughout the

cable span. In the absence of applied end moments, as is typically the case for torque

balanced' cables, therefore, the effect of torsion is zero. If end moments are present, i.e. a
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torque unbalanced cable is considered, the material torsion fl is constant along the cable

span and, therefore, a constant torque is applied over the entire cable length.

Equation 2.22 can be satisfied in one of two ways. First, torsion effects can be neglected

either on the basis that #1 < 1 or because end moments in torsion are not present. The

second approach is to calculate l1 from the boundary conditions, and then impose fl, =

C(t) along the span, where C(t) is a time varying constant.

Herein we adopt the first approach and assume that the torsional stiffness is negligible.

As a result, a new equation must be chosen to replace equation 2.22. The purpose of the

new equation is to fix the orientation of the local coordinate system about the tangential

direction. This is an arbitrary selection because the governing equations apply regardless

of the orientation of the normal and binormal directions.

For simplicity we specify the orientation of the local coordinate system by setting p - 0.

This simplifies the analysis by removing one variable from the equations.

With this simplification the angular velocity and rotation vectors reduce to the following:

'00401 = sin e

a0W2=

W3 cos

and

a= -'sine

as•04

3 Lcos .

Proceeding further, we examine the significance of the shear forces T2 and T3 . Using

the simplifications discussed earlier, we find the following nondimensional relations for the

shear forces:
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T2 . = .81(fll,0 2 3- &

TU = -#3(fI.(?3n +8!2)

Therefore, the shear forces are of order O(f1i). This is an important result that provides

information as to when shear forces are negligible. In particular, we find that shear stresses

are inversely proportional to L3, provided the radius of curvature is of order O(L). For

moderate to large tension magnitudes, tensile forces prevent the cable from developing

substantial variations in curvature. Therefore, if the cable tension Ti. is of order 0(1) and

the cable is very long, it is valid to neglect bending stiffness. However, if the tension is

small, the cable can develop substantial curvature and shear forces must be retained.

An alternative means for investigating the significance of bending forces is to consider the

induced strains. For simplicity we consider a two-dimensional configuration. Let eT denote

the strain induced by tension, i.e. T, = EAeT, and e, the strain induced by curvature. For

a radius of curvature a, the maximum strain due to curvature is given by e,,,. = r/a, where

r is the radius of the cable cross-section. If we consider the case where e, is of the order

of eT, then the binormal bending moment, M6, is given by Mb = El/a a- T1 1/(Ar). For

cables of circular cross-section, I = (ir 4)/4. Therefore, we find

M T. E•.r (2.23)
4

Neglecting rotational inertia effects, the binormal shear force Sb is obtained as

Sb = dM 6  TLr (2.24)
da 4=

where 1c is the characteristic length of change of the bending moment. Therefore, only if

1, is of order r, a situation which is not physically realistic, will the shear forces be of the

same order of magnitude as that of TI, in this case.

As a result, we can conclude that forces in bending are significant only if the strains they

induce are greater than those induced by tension, a situation which can occur in applications
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involving low tension.

2.4 Applied Forces

The external forces acting on the cable include the cable weight, buoyancy, and the hydro-

dynamic forces of drag and added mass. Each of these forces will be addressed separately

within this section. Note that all forces discussed in this section are per unit stretched

length.

2.4.1 Cable weight and buoyancy forces

Despite the seemiig simplicity of static weight and buoyancy forces, a large number of

papers have been written on the proper way to express these forces mathematically (see

reference list by Sparks [65]). To understand why this has occurred we must first return

to basic principles. Archimede's principle states that the net buoyancy force on a body

completely enclosed in a fluid is equal to the weight of the fluid displaced by the body.

The cable segment shown in figure 2.2 is attached to adjoining cable on both ends and is

therefore not completely enclosed in fluid.

To account for this condition at the end points, we superimpose forces as shown in figure

2.3. Because segment A is completely enclosed, we can write the buoyancy force FE as

FB - gp= A. (2.25)

where g is the gravitational constant. According to equation 2.1, this expression can be

rewritten as

FB(l + e) = gp, A. (2.26)

Subtracting the buoyancy force from the cable self weight we find an expression for w, the

submerged cable weight/unit length, given as

W. = (m - pNA)g. (2.27)

This force acts in the direction of the gravity vector (-I) and as such we write the final
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Figure 2.3: Superposition of forces to account for end effects.

expression for the forces due to the submerged cable weight

A(1 + e) = -wot = wo(nji+ n2fl+ - 3b) (2.28)

where, in terms of the selected Euler angles

ns = -cos cos9

n2 = sin

n3 = - COS sine.

Now we must consider the end point forces in segment B. These forces act in the axial

direction only and therefore can be lumped together with the internal tension. Following

Goodman and Breslin (19], we define the "effective tension", in terms the internal tension

and the hydrostatic pressure P, as

PATIC = T, + PA'S (2.29)
(1 +e)-(.9

In this manner, the form of the governing equations remains unchanged in water or air.
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Henceforth, to simplify the expressions, T1 is defined as the effective tension and the sub-

script e will be dropped.

2.4.2 Hydrodynamic forces

Determining mathematical expressions that accurately model the fluid-structure interaction

forces acting on the cable is extremely complex, especially if the effects of vortex shedding

are incorporated. Therefore, it is not surprising that a large portion of hydrodynamic

research is focussed in this area.

In addition to the hydrodynamic forces that arise from the cable motion itself, we seek

to incorporate fluid loads due to current. To this end we define J4 as the current velocity in

the jth direction. Transformation between known current magnitudes in a fixed coordinate

system to local coordinates is accomplished through the transformation matrix r.

Herein we adopt the semi-empirical Morison type approach for modeling hydrodynamic

loads [61]. In this manner the fluid loads are decomposed into one component in phase with

the fluid velocity (drag) and one component in phase with the fluid acceleration (added

mass).

To calculate the hydrodynamic drag force, the fluid velocity field is first decomposed

into tangent, normal, and binormal components. Denoting the relative velocities with a

subscript r, we can write

VIr = Vl -- J1

V2r = V2- 2

V3, = V3-3

Using Morison's approximation and denoting Cy• as the drag coefficient in the 3lh di-

rection, the drag forces are expressed as follows:

1(2.30)
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where

Rdl = -ip~d•rCdjvzrjvi(1 +e) (2.31)

Rd2 = -ipwdCd2V2Trv 2 , + v3?Ii(1 + e)' (2.32)

Rd3 = -lp~dCd3v3,jv22,+ v3lji(l+e)1. (2.33)2

Needless to say, accurate values for the drag coefficients are required for accurate solu-

tions. This is not a simple matt- with complications arising, for example, from changes in

surface roughness and the onset of vortex shedding. As a result, determining drag coeffi-

cients has been and continues to be an active area of research. For additional information

on drag coefficients consult [61].

Hydrodynamic forces in phase with the fluid acceleration are often called the added

mass forces. Added mass forces are one of the most frequently misunderstood concepts

in hydrodynamics, especially for investigators who study cable problems. In basic terms,

when a body immersed in a fluid is accelerated, the surrounding fluid must be displaced

and therefore is also accelerated to some degree. The additional inertia force required to

displace the fluid is known as the added mass force [48]. According to this definition, the

added mass force can only act in a direction normal to the cable and is independent of

viscosity. Lighthill [39] has shown that strip theory is an acceptable means of calculating

added mass forces for cables.

We express the added mass force in terms of the relative accelerations of the fluid,

normal to the cable, anid an added mass coefficient m..

A(I + e) = !.-M . (2.34)

As with the drag coefficients, the evaluation of m. is difficult. Generally, for cable

problems, the following expression is used

d = d2 (2.35)
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Figure 2.4: Description of location vector At, p).

2.5 Compatibility Relations

The governing equations as derived are valid for an incremental cable segment. As such,

compatibility relations which relate the cable velocities, orientation, and strain are required

to ensure compatibility between adjoining cable segments. In the absence of strain, a simple

physical interpretation of these relations is that they preserve the cable length.

We define ilt, p) as the vector from the origin of a fixed coordinate system to a point

on the cable, as shown in figure 2.4. In deriving the compatibility relations we assume that

the cable shape is sufficiently smooth. For this to be valid, q(t, p) and Its derivatives must

be continuous functions of p (or a) and t. This assumption was implicitly assumed in the

derivation of the governing equations as well. This is an important requirement which may

not hold for the particular case of a chain under zero tension. When tension Is lost in the

chain, a restoring force which prevents the chain from forming discontinuous slope does not

exist because chains, unlike cables have no bending stiffness. This topic is addressed further
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in chapter 5.

In the absence of discontinuities in the cable shape, we can use the property of continuous

functions of two variables [21] and write

D [D D(2.36)

According to the definitions of the tangent and velocity vectors [21]

S D.. (2.37)
Dt

DF 1 D"
Dp (1+ e) Ds

Substitution of 2.37 into 2.36 provides the compatibility relations in vector form

DD[( + CA = (2.38)

ft- Ds'

This can be expanded to give

Oe "1" (I "1" e)Z3 x i = Of-, + xv. (2.39)

2.6 Final Equations

In order to clarify the expressions used in subsequent chapters, we eliminate the subscript

notation used previously. Here we redefine the velocities (vi, 2,v3) as (u, v, w) and the

internal forces (TI, T2, T3) as (T, S., Sb), where T denotes the effective tension and S, and

Sb are the normal and binormal shear forces, respectively. In addition we assume a linear

stress-strain relation is applicable and write

e Y (2.40)

where T denotes the effective tension, as defined in (2.29).

In terms of the new variables and the expression for the strain, we can express the
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equations of motions in their final form.

Ou oe 8¢cse O T
m(L- + WL - vL- Cc = T+ Sblf2 - S$f13 + Won, + Rd, (2.41)

Dv +€(u co s )+ tv, !S- + fl 3 (T + Sb tan 6) + won2 + Rd2
m"Ow 84si 09-O OV~r OS&

M( V-LO Ut) + M.-- = 6 SJ13 t= o- r? + w.n- +.) m
OTs

1•- r 2  tan e + S6(1 + T )3Eu 1 E 3

as EA
au 1lOT

Ov T. os
+ 03(u + w tan 0) = (1 + -)cosI9

EA at
Ow T.e7- 03 fvtan 0 - f12U = -(1 + •-L)O

o0
0t2 = Os

08f -- cos0

2.7 Three-Dimensional Equations Without Bending Stiff-

ness

For completeness we consider the three-dimensional equations of motion in the absence of

forces in bending. The assumptions underwhich these equations are applicable are detailed

in section 2.3.2.

Neglecting bending stiffness, (2.41) reduces to six equations in six unknowns, as given

by

m(Lu+w -vLcose) = 8¢+wn 1 +Rd (2.42)
av 8¢ 0v2- _84 cosO 9+m(- +" L-u CoOS 0" + sinO)) +" m.- = TL-' C voS0+ n2 +" R42

mOW 8 O ~09 Oa,. _O0
- v-sin - u-)+ in 0 - = -T ++won3+Rd3

01 Ot 0t at as
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au W0 V80 cos 0 1 OT
as 3s' Ts EA Ot

&u 04( T.84
V- + Z(ucosG+wsinG) = (I+ _-L).L-cosa

aw 08s - 88 TaBv-sin -u- = -(I +-)
Os ToO01 EA Ot

2.8 Discussion of Equations of Motion

Of fundamental significance to the study of low tension cables is that the cable governing

equations are singular for zero tension if forces in bending are neglected. Dowling [17] has

shown using analytic techniques that when the cable tension is balanced by a fluid loading

term, a critical point develops. She found that in order to obtain solutions beyond the

critical point, bending stiffness must be incorporated in the boundary layer region near

this singularity. In addition, Dowling found that solutions beyond the critical point are

influenced by bending stiffness.

The singularity identified by Dowling is the same as that associated with (2.42) because

here we have neglected a virtual mass term by considering cables which are transverse to

the flow rather than in-line as treated by Dowling. The more general formulation, given by

(2.41), is stable for zero tension.

A physical interpretation of the zero tension singularity is most readily understood by

considering the mechanisms by which energy is propagated along the cable. For a perfectly

flexible cable, transverse disturbances are propagated at a speed proportional to the VIT,

where T is the instantaneous cable tension [6]. As such, the speed of energy propagation

slows considerably in regions of low tension, and energy cannot be transmitted past a

critical point of zero tension. As such, energy builds rapidly near the critical point, and the

equations become singular. If the point of zero tension coincides with a boundary, i.e. the

free end of a hanging chain, energy can be transferred by reflection. For this reason, a zero

tension point is permissible at a boundary, provided the boundary is free to reflect energy.

Triantafyllou and Triantafyllou [74] have shown that if the free end of a hanging chain is

constrained, the governing equations for a perfectly flexible chain are unzolvable.

An alternative energy mechanism whk-.h gains importance as the tension approaches zero

is bending stiffness. In this later case, energy is transferred by flexural waves at a speed
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proportional to VE'7. In reality, cables do exhibit a finite degree of flexural rigidity, which

can serve as the necessary physical mechanism for energy transfer. By contrast chains have

no flexural stiffness. They are, however, able to transfer energy by developing rotational

inertia in the individual links.
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Chapter 3

Numerical Methods

3.1 Introduction

The cable governing equations derived in chapter 2 are nonlinear and strongly coupled. As

a result, analytic solutions are unavailable except in simplified cases. Some analytic results

are obtainable using asymptotic techniques, as discussed in chapter 5, however, in order to

obtain solutions for more general problems, numerical methods must be employed and a

number of algorithms have been developed for this purpose.

In this chapter we first discuss the previously developed numerical techniques in the

area of cable dynamics. In particular we address the limitations of these techniques as they

apply to the study of low-tension problems. Also addressed in this chapter are two recently

developed algorithms which were designed to overcome the drawbacks of existing methods.

These two algorithms were used extensively to obtain the numerical results discussed in the

subsequent chapters.

3.2 Previous Numerical Techniques

Several papers have been published which survey existing analytic and numerical techniques

used to study cable dynamics. Casarella and Parsons [11], and then Choo and Casarella

[13], provide comprehensive summaries of the developed methods. However, these papers

were written in the early 1970's and recent developments have left these papers somewhat
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out-dated. Triantafyllou [68] has recently published a review paper which summarizes many

of the advancements that have occurred over the last twenty years.

As mentioned in the introduction, solving the cable governing equations is extremely

difficult. These difficulties are principally due to geometric and hydrodynamic nonlineari-

ties. In addition, material nonlinearities may also be present if a linear stress-strain model

is not applicable.

To eliminate the nonlinearities, many methods linearize the problem by assuming small

deformations from some static configuration. This greatly simplifies the analysis. However,

for low-tension problems, large displacements can develop due to the small restoring force,

thereby rendering any static configuration meaningless. Also, because the dynamic tension

may be equal or greater than the static tension, low-tension problems cannot be simplified

by linearizing the tension.

Other assumptions typically made include neglecting inertial forces, bending stiffness,

and elasticity. The validity of these assumptions is dependent on the particular analysis in

question and the methods therefore are often restricted to a limited class of problems.

In recent years a wide range of numerical techniques have been applied to the study

of cable dynamics. The most prevalent methods of approach are finite-difference, finite-

element, spectral-method and lumped-parameter models (for separate discussions of these

methods see [1],[15],[77],[7], and [29]). A detailed comparison between finite element and

lumped parameter methods has been published by Leonard and Nath [37]. The method of

characteristics has also been used successfully. In particular, Schram and Reyle [62] used

the method to show coupling occurs between transverse and longitudinal disturbances if

the shape of the cable is not straight.

In the author's opinion a finite-difference approach is most suitable for the low-tension

problem. Lumped-parameter and finite-element models require an excessive amount of

computer storage and often obscure the underlying physics of the problem. Other authors

have determined that finite-element models are not well suited for inherently nonlinear

problems, involving large displacements [16]. Spectral-methods suffer from the limitation

that derivative boundary conditions, such as those encountered when incorporating bending

stiffness, are often difficult to evaluate.
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The finite difference method has been used extensively in the past to model cable prob-

lems. Sanders [60] developed a three-dimensional algorithm in which finite-differences are

used to discretize the cable and simulations are advanced in time using a Runga-Kutta

recurrence scheme [55]. This algorithm suffers from the limitation that inertial forces are

neglected. This assumption is not valid for low-tension problems in that inertial forces can

be on the same order of magnitude as tensile forces.

In 1983, Ablow and Schechter [1] developed a three-dimensional algorithm which includes

inertial forces and discretizes the problem in both space and time using finite-differences.

The method uses a second-order accurate implicit approximation scheme, commonly known

as the box-method [45], which is centered in space and time. Milinazzo, Wilkie, and Latch-

man (44] improved on the methodology of Ablow and Schechter by developing a better

method for treating the zero tension boundary condition at the free end. Burgess [8] cor-

rected earlier mistakes in these publications by properly accounting for the hydrostatic and

added mass forces. In addition, he has incorporated the ability to pay cable out from a

ship, as required for cable deployment simulations. However, as with the previous authors,

he incorrectly applied the principle of conservation of mass and derived erroneous strain

terms in his equations.

An important point to note about these previous formulations is that the algorithms all

become unstable if the tension approaches zero anywhere along the interior of the cable, a

situation which is likely to occur in low-tension studies. This is a significant drawback of

the methods and prevents altogether the study of cables under zero initial tension.

Ablow and Schechter [1] determined that if the tension vanishes anywhere along the

cable, the determinant of their stiffness matrix becomes zero. Because this matrix is inverted

within their numerical approximation scheme, the method fails. As noted by Dowling (17],

the singularity encountered by Ablow and Schechter is not an artifact of their numerical

scheme; instead it stems from the ommission of flexural stiffness in the dynamic equations.

The previously noted finite difference schemes all neglect the effects of bending stiffness and

therefore are limited in their application to low-tension problems based on both numerical

and physical considerations.

An sidenote to Dowling's work is that her solution is based on the correct form of the
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linearized transverse momentum equation, first derived by Paidoussis [52]. In two earlier

papers by Paidoussis ([501,[51]) a term was incorrectly omitted in this equation, leading

several authors ([49],[30],[31]) to publish erroneous solutions of the towed array problem.

The limitations of existing algorithms created a need for novel approaches to the low-

tension problem. Two alternative numerical methods were developed for this purpose. The

first method was primarily developed to treat problems under zero tension initially, such as

impulsively loaded cables as discussed in chapter 4. Prior to excitation of the cable, zero

tension is permissible, therefore, the failure of previous algorithms in this case stems from

the numerical formulation. Within the method, which is detailed in the next section, an

explicit time integration scheme is used in which the cable tensions are cast as the only

unknowns in a matrix problem. Therefore, the onset of zero tension along the cable does

not present a problem computationally. This allows a wider class of initial value problems

to be studied.

The second method developed incorporates the effects of bending stiffness in an implicit

finite difference formulation, similar to that of Ablow and Schechter. An implicit scheme

was selected because the characteristics of the governing equations are altered by including

bending stiffness [76]. In section 3.4 we show that incorporating bending stiffness eliminates

the zero tension singularity. This finding has been shown previously for the two-dimensional

case by Howell [22].

3.3 Explicit Formulation

Explicit time-domain integration schemes are generally used in conjunction with finite-

element and lumped-parameter methods [12]. However, existing finite-difference algorithms

use implicit time integrators. The reason is that implicit schemes can be unconditionally

stable while explicit schemes are conditionally stable [37]. In addition, explicit schemes are

not well suited for predominantly parabolic equations [45]. This has led some researchers

[60] to question the applicability of explicit schemes in general. However, it is possible to

formulate the difference equations so as to retain the hyperbolic characteristics of the gov-

erning equations. In addition, by chosing the inextensible form of the cable equations, we

can eliminate longitudinal waves. This reduces the stiffness of the equations because longi-
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tudinal wave speeds are generally much higher than those for transverse waves. Therefore,

an explicit solution scheme is feasible, provided it remains stable. Such a scheme could offer

significant advantages over implicit schemes because no iterations are required.

3.3.1 Equations of Motion

In this section we restrict our attention to two-dimensional problems only. The two-

dimensional inextensible form of the governing equations and compatibility relations is

given by

m(Ou -• oT - WD cosO-,,.-rCdtuI.UI (3.1)
,Or O~l+Oi =i TOs

m(- + -u) + in 6 - = T- + wosinO - ip.wDCd.vrvjI
at Ot Dt 02

T s~ -Ts0
D v 0008 +8U

These equations describe the mathematical formulation of the problem and form the

basis of the numerical approximation scheme. With regard to boundary conditions, we

consider the cable to be pinned at one end (s = L), with the tangential and normal velocities

prescribed. The other end (s = 0) is considered to be a free boundary and zero tension

is imposed at this end. The fourth boundary condition, zero moment at the free end, is

automatically satisfied by neglecting bending stiffness.

3.3.2 Finite-Difference Approximation

The basic premise of the explicit formulation is to write all spatial derivatives in terms of

the previous time step and to then solve for the new time values directly. The formulation

begins by first discretizing the cable into n nodes. The governing equations are then applied

directly at each node. First-order and second-order approximations are used for the time

and spatial derivatives, respectively. Second-order forward and backward differences are

used for spatial derivatives at nodes 1 and n, respectively.
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0

Figure 3.1: Example of growth of instability in an undamped explicit formulation at times
t=0.0, 2.5, and 3.0 seconds.

As with any numerical scheme, stability is a major concern. It has been determined

that in the formulation described above some degree of numerical viscosity is required for

stability. This finding is demonstrated in figure 3.1. The problem studied was a hanging

chain in air, subject to a sinusoidal displacement at the top. The cable was initially in

a Bessel function shape, as given by the third natural mode of the linear system. The

instability encountered was due to undamped high frequency parasitic waves generated at

the lower boundary. It can be shown that these waves grow exponentially in time [45].

The goal is to construct a numerical scheme which is accurate for the long wavelengths

(which are the main interest) while at the same time dissipates the energy at the short

wavelengths (which tend to corrupt the solution). Such a method is no less accurate than

a nondissipative model, as the latter is already inaccurate for high-spatial wave numbers.

For this reason an artificial dissipative term is added to each approximation of the time

derivatives and the degree of dissipation is controlled by the leading coefficient a, where
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a c� 1. Mathematically, the procedure is represented by the approximation below.

" OU - "2U (3.2)

This procedure Is similar to the Lax-Fredrichs and Lax-Wendroff [45] formulations of the

first-order wave equation. Within these two methods, the leading coefficient a is dependent

upon the spatial and time stepping increments, As and At, respectively, and is given by

the following:

A8 2

a = -- Lax - Fredrichs
2At

0 =A Lax - Wendroff.

Within the present explicit scheme, the a coefficient is independent of the stepping

factors and can be varied along the cable and between the independent variables (0, u, v).

This allows the user greater flexibility during the investigation. The basic idea is to choose

a of sufficient magnitude to provide stability while being small enough to have a negligible

effect on accuracy.

Combining the approximations described above yields the following system of equations:

Node 1 (forward-differences)

\,+v = - 4e, + 3v' + u'(03+ - 402 + 30'), (3.3)

w 0oAt aAt 1. -

tt
W0-1cos(g4)- - -~p.DrCditjj4j 1 u (3.4)

in m 2

V~4+1 V- - n'~ji(O'+i - - 2- !±[j);"+ cors(O'+') - Jý' cos(44)J + Wotsin(,O') -
mI rn1  MI1

7"T(03 -404 + 30') - Lt ,DCdv,', (3.5)
mI 2 (3.5)2

Tj` = o.o (3.6)
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Internal Nodes (central-differences)

4+1 = - J,[v+1 - _ + ( - (3.7)

. ,i +1 I )+ u,( Tj- w, OAiL

At 1 i

-jý 4- 4 - + j IT-1CO
At1p.,•DrCdtu u iluj (3.8)

- i m in1÷ in)
A At ]

- T(O - -) -l) ip+,,DCdiVr4jVijI (3.9)

U++ 1 ,+t+ia+i+1 Uj- (3.10)

Node N (backward-differences)

++ + ui(qn2 - 4n + 3,0) (3.11)

U -= prescribed (3.12)

v+ - prescribed (3.13)
-.- 4u,+ 1 + 3u,. = -n+4+ -.- + 30'+') (3.14)

Here the subscript j is used to denote the node number while the superscript i denotes the

time step. The spacing ratio ,. is given by A,\ = A.; and mi = m+ m.. The overbar is used

to denote a term which has been modified to include the necessary artificial dissipation. If

additional dissipation was not required, the overbar would simply be removed. In terms of

the general variable q, q is given by

= 2Aat
q9 + !-\q -2q+q-) (3.15)

9. q• + 2\o'j~ 2q.j + '11As

=q + As (9,, 2q' -I + q,,_2)-

It should be noted at this point that (3.10) and (3.14) are written as implicit statements.
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This is a necessary modification for the solution procedure. Briefly, the algorithm proceeds

in the following manner. First the unknown angles are solved for directly using (3.3), (3.7)

and (3.11). Next, (3.4), (3.5), (3.8), (3.9), (3.12), and (3.13) are introduced into (3.10)

and (3.14). By including (3.6), a n x n matrix is formed with which to solve for the

unknown tension values. These values are then used to solve directly for the velocities.

This procedure is then repeated through the desired number of time steps. Within the

algorithm, the banded structure of the matrix is exploited. Therefore, the matrix solution

takes roughly n operations and is only performed once per time-step.

3.3.3 Explicit Scheme Results

At the present time, the most widely used finite-difference solver for the cable equations

without bending stiffness is the implicit routine first developed by Ablow and Schechter

[1]. Therefore results obtained with the explicit scheme will be directly compared with this

method. The implicit method will be discussed in greater detail in the next section.

The three main concerns associated with the development of any numerical algorithm

are accuracy, stability and computational efficiency. These topics are all closely related. On

the basis of accuracy, the implicit scheme is superior in that second-order approximations

are used for evaluating the time derivatives while the explicit scheme is only first-order in

time (use of second-order differences in the explicit scheme proved highly unstable and was

therefore abandoned). In addition, some error is introduced within the explicit scheme by

the addition of numerical viscosity. Both methods prove stable provided sufficient numerical

dissipation is added to the explicit scheme. Excessive amounts of dissipation will inhibit

accuracy, however, therefore the explicit scheme is limited to some degree in choice of

stepping parameters. With regard to efficiency, the explicit scheme appears to hold an

advantage in that no iterations are required and the matrix problem is four times smaller.

Therefore, for comparable stepping increments, the implicit scheme requires at least eight

times more operations, assuming only two iterations per time step and that solution of an

n x n banded matrix problem is on the order of n operations.

A direct comparison between the methods was obtained by studying the motions of a

hanging chain in air. For small motions, an analytic solution for the displacement q(t,s)
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Finite-Difference Method # of Nodes Time-step

Explicit 80 0.002
Implicit 80 0.016

Table 3.1: Case studies for hanging chain problem

may be obtained in terms of Bessel functions, and is given by [74]

q.(t,s) = J,(2JV')sin(wt). (3.16)

The third mode was used in the analysis (w3L = 4.327) and the velocities were initialized

within the algorithms according to (3.16). Several cases, involving a wide range of stepping

increments were studied and two indicative cases are listed in 3.1. For the explicit method,

the instability was generated near the top boundary, therefore additional dissipation was

incorporated near this point. The stepping increments were chosen so as to keep the relative

error in the explicit solution below 0.5 percent. The two cases are roughly comparable in

computation effort.

The results obtained are shown in figures 3.2 and 3.3. The error measure is based on the

rms difference between the analytic and numerical solutions, expressed as a percentage of

the maximum displacement. As figure 3.2 shows, it is possible to obtain comparable results

with the explicit scheme, in some cases, provided the dissipation is added correctly. Figure

3.3 depicts the cable shape at various times and shows the error incurred by both methods.

For reduced stepping increments, both methods converge to the analytic result.

The two methods were applied to a second problem involving a positively buoyant cable,

pinned at the bottom, subject to a sinusoidal current with a period of 1.0 seconds. The

results are shown in figure 3.4. Computational time was roughly equivalent. As readily

seen, both methods converge to the same result. Therefore, the explicit scheme provides

a means with which to compare the results of the implicit scheme. In addition, unlike the

implicit scheme, the explicit scheme does not become singular for zero intial tension. This

is due to the fact that the tensions are deliberately cast as the unknowns in the matrix
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Figure 3.4: Calculated cable shape from explicit and implicit schemes for anchored cable
subjected to a sinusoidal current, at times t=0.0, 6.0, and 15.5 seconds.

problem. The explicit scheme may therefore be used to study a wider range of initial value

problems.

In general, for simulations with longer time spans, the artificial dissipation term may

begin to affect the solution accuracy. Therefore, the explicit scheme is beter suited for

transient problems and can be used in conjunction with an implicit scheme to step-through

computationally difficult periods. In submerged cable problems, however, the fluid drag

provides additional damping, thereby helping to stabilize the explicit scheme. For such

problems the explicit method retains its accuracy over long time spans.

3.4 Implicit Formulation with Bending Stiffness

Little research has been conducted, in the past, on the effects of bending stiffness. This is

attributable to the fact that for long taut cables, as typically studied, bending forces are
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often negligible. Sanders [60] developed two criteria for analyzing the importance of bending

stiffness. First the internal shear force must be significantly lower than the cable tension.

Secondly, for a cable of constant curvature, in which the shear force vanishes, the tension

In the fibers due to pure bending must be less than the cable tension. The nondimensional

analysis conducted in chapter 2 also provides guidance as to when bending effects can be

neglected. For low-tension cables, large deformations can occur which give rise to shear

forces that can be of equal magnitude as the cable tension. Therefore, bending stiffness

must be included for such cases.

McCoy [41] found that significant stress differences arise in the neighborhood of concen-

trating loadings if bending stiffness is retained. He found the magnitude of these differences

was independent of the amount of bending stiffness, however the extent over which these

differences occur diminishes wih decreased bending stiffness.

Ketchman and Lou [32] developed a two-dimensional finite-element model with bending

stiffness. They applied their method to towed cables and determined that the effects of

bending stiffness were confined to a region near the free end of the cable, where the tension

was lowest. Their approach, however, is limited in its applications as inertial forces were

neglected.

3.4.1 Equations of Motion and Boundary Conditions

The three-dimensional nonlinear equations of motion, as given by (2.41), can be expressed

in matrix form as follows:

-- =/-L-+o •(3.17)
Os Ot

where

V = (T, S,, S6, u, v, w, 5, 0, A2 , 0l3 )T (3.18)
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1 0 0 0 0 0 0 0 0 0

0 10 0 0 0 0 0 0 0

001000 0 0 0 0

000100 0 0 0 0

000010 0 0 0 0M=

000001 0 0 0 0

0 0 0 0 0 0 cos 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 EI 0

0 0 0 0 0 0 0 0 0 EI

0 0 0 m 0 0 -mvcose mw 0 0

0 0 0 0 m+m . 0 mucos0+mwsinO 0 0 0

0 0 0 0 0 m+ Ma -mvsine -mu 0 0

ZJ- 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 (1+ T )CosO 0 0 0N-

0 0 0 0 0 0 0 -(1+ ) 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Sn N - Sb(1 2 + w. cos 4cos 0 - Rdl

-fl 3 (T+ Sb tan ) - w. sin 0- Rd2 + m.pjZ

S. S3 tane + Tf)2 + w. cos 0 sin 0 - Rd3 + m.'t

fl3V- fl2uW

-%(V + w tan 0)

f13 tan 0 4- 0 2u

R3

Elfl~tanB+ Sb(1 + X•)
EIfl2fs tan 0 - Sn(1 + T

To complete the mathematical formulation we must consider boundary conditions. One

end of the cable (a = 0) is considered as a free boundary while the other end (a = L) is

pinned to an anchor or ship. At the free boundary, the tension, moment, and shear forces

are all zero. At the pinned end, the three velocities are prescribed and the moments are set

equal to zero. Mathematically, these boundary conditions are expressed as follows:

T(t,0) = 0 (3.19)

EI%(t, 0) = 0

EI 02(t, 0) = 0

as
El O3(t, 0) = 0

E1On3(1,°) - o
Os

u(t,L) = U(t)

v(1, L) = V(t)

w(t,L) = W(t

Elfl2(t, L) = 0

Eff 3s(t,L) = 0
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where U(t), V(t), and WV(t) are some known velocities. In this fashion, the required ten

boundary conditions are imposed and an equal number are applied at each boundary.

3.4.2 Finite-Difference Approximation

As with any finite difference formulation the cable is first discretized into n nodes, separated

by As, and time is divided into a series of steps of length At. The set of equations given by

(3.18) are solved at the midpoint between nodes j and j + 1, denoted by j + 4, and at the

time i + 1. The partial derivatives in (3.18) are expressed using centered finite differences

as follows:

J At+ -Y1 (3.20)

Ot = At

01' 17i - 17i

Os As

Introducing (3.20) into (3.18) and evaluating the equations at j + 4 and i + 4 yields

)yi+1 y-~ y17.4
[Mji1^ j+11 _Y+'- I M].+- _7

[P1; + AM4 '] I ~ + [Mi;+, + Af;l'_As As
j+1 v 

i1-

[N]+ NAj1 I'A + [Nj'' + Nj] At~--~ +[Ni+2 Qi+ 1"+l -- j+j + Q ]

j+ 1" " "- jl+ j. (3.21)

This provides 10(n- 1) equations with which to solve for the I0n unknowns. The remaining

equations are provided by the 10 boundary conditions.

The set of difference equations given by (3.21), along with the boundary conditions,

provide a coupled set of nonlinear equations with which to solve for the new time values. A

Newton-Raphson [14] iteration scheme is used to solve for the unknown variables. Several

iterations per time-step may be required for convergence. However, the banded structure of

the resulting matrix can be exploited, reducing the computations to roughly n operations

per iteration.

Ablow and Schechter [1] base the stability of their numerical scheme on the determinant
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of the M matrix. This is because this matrix is inverted within their algorithm. If bending

stiffness is neglected, we find that

del M -T 2 cos9. (3.22)

Therefore, if the cable loses tension during the computations, or if the tension is zero

initially, their method becomes unstable. In the numerical scheme outlined here, the M is

never actually inverted, however method still fails due the zero tension singularity in the

equations of motion. The method will also become unstable if the cable becomes horizontal

in the out-of-plane direction (i.e. 0 = f or ,L). This singularity stems from an ambiguity

in the reference system and can be controlled, but not removed entirely, by selecting an

alternative Euler rotation sequence.

A markedly different result is obtained if bending stiffness is retained. The determinant

of the M matrix shown here is easily obtained by taking the product of the trace yielding

del M = (EI)2 cos 9. (3.23)

Therefore, provided the bending stiffness is finite, the matrix can be inverted, regardless of

the cable tension magnitude. Howell (22] has previously demonstrated that incorporating

bending stiffness eliminates the zero tension singularity for the two-dimensional case.

3.4.3 Implicit Scheme Results

The implicit scheme has been verified within the linear regime, and the effect of bend-

ing stiffness on the dynamics has been studied by Howell [22]. Figure 3.5 compares two-

dimensional results for a cable, subjected to a sinusoidal current of period 1.0 seconds, with

and without bending stiffness. A relatively large nondimensional bending stiffness term of

El/mgL3 = 10-3 was implemented for the analysis. As readily seen, the cable shape is

significantly altered with the curvature being greatly reduced by bending stiffness. In par-

ticular, bending-stiffness effects were greatest over the top half of the cable. This is due to

the lower cable tension in this region and demonstrates the physical importance of bending

stiffness in regions of low tension.
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Chapter 4

Nonlinear Impulsive Motions

4.1 Introduction

In this chapter we explore certain fundamental mechanisms of cable response intrinsic to low

tension behavior by considering a cable under zero initial tension. Excitation of the cable is

accomplished by the application of an impulsive load at one end and the resulting tension

and velocity distribution along the cable is studied for a variety of initial configurations.

Understanding the dynamics of impulsively loaded cables is of importance as low ten-

sion cables are often more susceptible to this form of excitation than are taut cables. To

understand why this occurs, consider that for low-tension cables, by definition the dynamic

tension component is of equal or greater magnitude than the static tension. Therefore, it is

very likely that the dynamic tension will act to cancel the static tension over a portion of

the loading cycle, a phenomenon often referred to as tension clipping [64]. This can occur

even though the initial tension is high. Following the periods of zero tension, tensile forces

initially build-up over a short time span and can therefore be considered impulsive. These

forces, in turn, can lead to large cable accelerations and maximum cable forces nine times

the static payload weight have been found to occur [18].

Needless to say, this can become a highly dangerous situation in many marine operations

such as towing. Several authors, including Shin [63], Milgram et al. [43], and Papazoglou

et al. [53], have described such dynamics, concentrating primarily on the snap condition,

at which the tension is maximum.
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Herein we concentrate on the tension distribution and resulting velocities immediately

after the application of the impulsive load. The results presented here are summarized in a

recent paper by Triantafyllou and Howell [71].

4.2 Formulation of Impulsive Equations of Motion

The equations of motion for a cable under impulsive loading have been derived previously,

first by Routh [59] and then Lamb [34], and more recently by Triantafyllou and Howell [71].

As with these previous authors, we consider the cable to be inextensible. This condition of

inextensiblity is based on the following assumptions: 1) the static tension is of the order

of the total weight of the cable; 2) the velocities applied impulsively on the cable are small

compared to the speed of elastic waves; and 3) one end of the cable is free or the cable

has large sag. The first assumption defines a low tension cable, the primary focus of this

research. The second condition ensures that elastic waves will not be excited, while the third

condition, combined with the second, ensures that the cable does not stretch considerably.

In fact, if one cable end is free, the tension is zero at that point at all times. Therefore, for

moderately long cables with high Young's modulus (such as metallic cables), the tension

never builds to sufficiently large values to cause substantial stretching. If one end of the

cable is not free, however the cable sag is large, elastic effects remain small, even for taut

cables. This has been shown by Irvine and Caughey [26]. They determined that the relative

parameter which quantifies the effects of elasticity is A, where

A2 = EA tuL (4.1)

Here H denotes the horizontal static force applied at the cable end points. The parameter

A2 is proportional to the ratio of the elastic to catenary stiffness of the cable. This ratio

is typically very large for large sag to span ratios, i.e. large values of woL/H. When the

elastic stiffness is very large, the cable employs its catenary stiffness, thereby preserving the

cable length. In chapter 6 we formally derive the expression for A.

As in chapter 2, we derive the equations of motion using a lagrangian reference frame,

fixed on the cable, and we adopt the same nomenclature defined previously. In this section
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we neglect the effects of bending stiffness, however, forces in bending are treated in section

4.4.

The inextensible cable governing equations are given by

DV D(Tt) -
S= D- -(4.2)

The impulsive equations of motion are determined by integrating (4.2). We denote Ti(s)

as the amplitude of the impulsive tension, developed at time t = 0+, and define the cable's

velocity immediately before and after the application of the impulsive tension as V- and

V7+, respectively. Integrating (4.2) yields:

D (Tj) (4.3)
m(P+-V~-)= D a

We can express (4.3) in component form using the vector 6' to represent the local

curvature of the cable. At this point we define f = (fl1 , f12, %13) as the Darboux vector of

rotation [21], which is given by the following:

1
fl = - (4.4)

f)2 = 0

203 1

p

where p denotes the local radius of curvature and r the local radius of torsion. Note that

we have chosen to adopt the so-called principal directions [21] for the unit vectors (t, ij,b).

This is in contrast to the definitions used in chapter 2, where the orientation of the normal

and binormal directions about the tangent direction was chosen arbitrarily. This change

has been made here because the use of principal coordinates greatly simplifies the impulsive

equations.

Using (4.4), we can express (4.3) in component form yielding
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+-U-

m(U+ _) = d_' (4.5)da

m(v+ - v-) = Ti 3

M(W+-W-) = 0

The compatibility relations are derived on the same basis as in chapter 2, i.e.

DVI* DiD = V. 
(4.6)

From (4.6), we find the following relations which are valid for both t 0- and t i 0+,

du - 03V 0 (4.7)

dv
T- + f 3L - flw = W3

dw
+-+ lv= -,,.

Eliminating the velocities from (4.5) and (4.7) provides a single equation in terms of the

impulsive tension.

dTifl•2 T (4.8)

Equation (4.8) is an important result which shows that the impulsive tension is inde-

pendent of the geometric torsion, 0l1, and depends entirely on the local curvature of the

cable given by fl3. From (4.5) we find that the binormal velocity remains constant, while

the tangential and normal velocities depend exclusively on the curvature and magnitude of

the impulsive tension.
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Figure 4.1: Cable in a straight line.

4.3 Solution of Impulsive Dynamics

In this section we use (4.8) to derive closed form analytic results for several initial config-

urations. These results are used to identify the impulsive tension distribution along the

cable, as well as the velocities that develop due to the impulsive loading.

4.3.1 Cable in a straight line

Perhaps the most simple example to consider is a cable of length L, sitting at rest in

a straight line configuration on a horizontal frictionless table (figure 4.1). For this case

11 = 0 because the radius of curvature is infinite. One end of the cable is suddenly pulled

at an amplitude T7(L) = T. while the other end is free, i.e. Ti(O) = 0. Using these boundary

conditions and (4.8), the solution is obtained as

Toa
T,(.) = T (4.9)

mL'

All other quantities are zero. From these results we find that if the cable is initially

straight, the impulsive tension distribution varies linearly along the cable and the entire

cable begins to move in the tangential direction at the same velocity.
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Figure 4.2: Cable in the form of a circle.

4.3.2 Cable in the form of a circle

Another simple example which can be solved exactly is the case of a cable of length L sitting,

at rest along a full arc of a circle of radius a, on a horizontal frictionless table (figure 4.2).

One end of the cable is suddenly pulled at an amplitude T. and the boundary conditions

are given by T1(0) = 0 and Ti(L) = To. The solution of (4.8) is given by

T minh(L/a)77q(e) = 0.io h(/ (4.10)

= T. cosh(a/a)
ma sinh(L/a)

v+(a) = T. sinh(s/a)
ma sinh(L/a)

The second compatibility relation in (4.7) provides the angular velocity

= 2To cosh(,/a)
rMa 2 sinh(L/a)" (4.11)
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4.3.3 Cable in the form of a helix

To show that the initial development of tension is independent from torsion, we consider a

cable with a three-dimensional initial configuration resting in the form of a helix, i.e. p = a

and r = b, where a and b are constants. Again one end of the cable is suddenly pulled and

we impose the same boundary conditions as in the previous example. The exact solution is

obtained as follows:

Ti(s) To sinh(s/a) (4.12)
Tosinh(L/a)

U+(S) = T. cosh(s/a)
ma sinh(L/a)

v+(s) =To sinh(s/a)

ma sinh(L/a)
w+(s) = 0

2To cosh(s/a)W3(s) =ma2 sinh(L/a)

wT(s) T T ginh(sla)
mab sinh(L/a)

As readily seen, the same tension and velocity distribution develops as with the two-

dimensional case of a chain in a circle, the only exception being that W2 is nonzero. This

shows the independence of initially developing tension from torsion.

4.3.4 Cable of reversing curvature

We next consider a cable of length 2L at rest on a frictionless horizontal table. The cable

configuration is comprised of two circular arcs of radius a and opposite curvature, as shown

in 4.3. The curvature %3 is discontinuous at the origin, which is fixed at the midpoint of the

cable, jumping from the value -1 to the value 1. When one end of the cable is suddenly

pulled with the impulsive force T., the solution can be obtained as done previously, and we

find

Ti(s) = T- sinh([s + L]/a) (4.13)

sinh(2L/a)
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Figure 4.3: Cable of reversing curvature.

This is the same result obtained in the two previous examples, with the exception that

here the origin has been shifted and the length of the cable doubled. The tangential velocity

is also easily obtained. However, when we proceed to derive the normal velocity, a physically

impossible discontinuity appears in the velocity v+(s) at the point where the curvature is

discontinuous. This can be shown by examining the governing equation in the normal

direction given by

V+(.s) = 1-13 (8)T,($). (4.14)

Furthermore, the angular velocity w3 develops a singularity, as evidenced in (4.7), when

v(s) is discontinuous.

A discontinuity in the curvature is possible only for a perfectly flexible cable. This

discontinuity can be removed by introducing the bending stiffness of the cable, which ensures

a smooth initial configuration. However, if the singularity identified in the case of reversing

curvature is related to a basic cable mechanism, than the manner of smoothing of the

solution is of importance.

To determine if in fact this is the case, we consider the same example of a cable with
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reversing curvature at rest on a horizontal frictionless table, but we make the curvature

reversal smooth. The initial curvature is chosen as

-1/a -L:_ a :_ -c

fl 3(a) = /ac f

1/a c< a <L

where a, e are constants and e < L. The solution when one end is impulsively loaded can

be obtained separately in the three regions defined above. In the first and third regions the

solution for the tension can be obtained explicitly as before, with two unknown constants

in each region. In the middle region the equation for the tension becomes:

d2  - T (4.15)

Using the substitution s = x6, with 6 = v'a7T, (4.15) can be brought into the standard

form of the parabolic cylinder functions:

d2Ti :2
d2 X2 -•-Ti = 0. (4.16)

The solution of (4.16) can be expressed as the sum of two independent solutions of the

parabolic cylinder equation, scaled with two unknown constants. Since 1:j 15 V(-•, we

use the small argument power series expression of the parabolic cylinder functions [2] and

match asymptotically the two outer regions with the inner (middle) region. This provides

four matching conditions which combined with the two boundary conditions, the same

conditions imposed in the previous examples, allows for the solution of all six unknown

constants. As c tends to zero, we obtain the following asymptotically valid results:

T T0 inh([s + L]/a) (4.17)
airah(2L/a)

U(a + T. cosh([a + L1f a)
ma ainh(2L/a)

)T Sinh([s + /.]a)
m sinh(2L/a)
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The rotational velocity suffers from a discontinuity at the edges of the middle region.

The expression for w3 in the middle region is, asymptotically

T( sinh(L/a) (4.18)
maac 3inh(2L/a)"

The discontinuity at the edges can be removed by requiring that the first derivative of the

curvature is everywhere continuous. The importance of (4.18), however, lies in identifying

a mechanism for building large rotational velocities. We have found here that at the point

of curvature reversal, w3 is inversely proportional to the width of the transition region.

4.4 Impulsive Motion of a Cable with Bending Stiffness

In the previous section we have shown the importance of the manner in which the cable

curvature is made continuous. For cables, the physical mechanism by which the curvature is

made continuous, prior to the application of any load, is bending stiffness. After the cable

is loaded, tension also acts to smooth the cable shape. Therefore, because the bending

stiffness magnitude affects how the cable is initially made smooth, it is natural to extend

the analysis by incorporating bending stiffness. Although the value of the bending stiffness

only indirectly affects the dynamic response, for completeness we include bending forces

in the dynamic equations as well, to study the direct effects of bending on the impulsive

response.

As derived in chapter 2, the governing equations incorporating bending stiffness, are

given as

mDV D2f
D- l•--+ R. (4.19)

ID• DMDO DM =(4.20)
D" t =Da !

Due to the selection of principal coordinates, the moment vector M differs slightly from

previously presented and is given by

65



Ali = GIaf2 (4.21)

M2 = 0

M-3 = EIfl3 .

Note that 011 in (4.21) is the material torsion, which is, in general, different from the

geometric torsion.

A nondimensional analysis of (4.20) was conducted in section 2.3.2, based on which it

was concluded that the inertial forces are negligible. In the context of impulsive forces,

however, the relevant time scale is very short and large angular accelerations may develop,

depending on the initial configuration. Therefore, we choose to retain these terms here.

If equation (4.20) is integrated in time from t = 0- to 0+, we find that the contribution of

the term involving M vanishes, assuming the length of integration is such that insufficient

time has elapsed for the cable to alter its initial configuration. As a result, the shear

forces may become impulsive as they must balance a step change in the rotational velocity.

Otherwise, (4.20) will not be satisfied. One may explain the mechanism generating an

impulsive shear force as a limiting process of infinitesimal shear deformation and large shear

modulus, in complete analogy with the development of impulsive tension which involves

infinitesimal extension and large Young's modulus.

Based on these considerations, we find that when the cable is subject to a forced motion,

both the tension and shear forces become impulsive. Therefore, integrating (4.19) and (4.20)

over the time period in which the impulsive load is applied yields the following equations

of impulsive motion:

n(V+- f-) = D-!Ti (4.22)• Ds

S- = i-x'

Expanding these equations along the (i, fi,l) system gives
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dT.

"Z(u+ - U-) = ' - S.n4f 3  (4.23)
ds

dS "
m(v+ - v-) = d +1 i -S$fl

ds+l(w+ - w) SbiM( W W -) d= " + $S '4 11

poI(W+ - WD) = o

pI(-4+ - Wi) = -s

together with the compatibility relations (4.7). It is interesting to note that w, did not

appear explicitly in the previous equations which neglect bending. The results here show

that w, is in fact zero, independent of the initial configuration.

By eliminating the translation and angular velocities in (4.23) and (4.7), we find three

equations in terms of the impulsive tension and shear forces (note that, for brevity, the

subscript i is omitted).

d2T T0•2n3 d13+ I =0
"d83 2' - 3- 3dS- d - S 1.3S6- (4.24)

d2Sn (62 + )2_ n2)S - dSb - dfl+ dT Tdfl3
ds2 1 -3--s - s d+2•3-s do

d2$ b (62 + (12)S b + 2f l, d S ' + S$ d rf 0 0 T
dS2S dS ds1dT(+---Sb"- - + d + fl1 f 3 T=O0

where 62 = m/(pjI).

For a cable of circular cross-section, 62 = 4/r2, where r is the radius of the cable cross-

section. As a result, we find 6 > (1l1 , f13) since neither the radius of curvature nor the

radius of geometric torsion can be as small as the radius of the cable. As shown in the next

section, this implies the formation of boundary layers in shear.
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4.5 Solution of the Cable Equations with Bending Stiffness

As an application we consider the two-dimensional impulsive motion of a cable, and reduce

(4.24) to the following:

d2T- (L , - '2 LO 2 -d = 0 (4.25)
6 da d32 d2  2 dd T
d2S n 1i2 _d#LO2 )+TP~+dbdrS S,62 -S ( + . ! j - + 2OL = 0
ds2 '�-ds T- da2  da'ds.

where O(s) denotes the initial angle of the tangential vector of the cable with respect to a

fixed direction.

We now reconsider the problem of a cable initially at rest in the form of a circle of

radius a (figure 4.2). The boundary conditions described previously are imposed, as well as

Sn = 0 at s = 0, L. To provide greater insight into the form of the equations of motion, we

normalize the spatial variable a by the radius of curvature and set z = $/a. In addition, we

define the quantity a = 4r 2/a 2 , where by physical considerations, a < 1.

In terms of these quantities, the equations of motion are given as

d2T _T-2Sn = 0 (4.26)dxdx

d2S" _ dTa -• - -(1 - a)S,, + d2 = 0. ( .7

The form of (4.27) clearly suggests the formation of boundary layers in shear because

the highest-order derivative term is multiplied by a, meaning that, in general, it is not

possible to obtain a solution which satisfies both boundary conditions if the equations are

not reformulated near the boundaries. By conducting an asymptotic expansion in terms of

a and a boundary layer analysis near a = 0, L, we find the following asymptotic solution,

valid for a < 1:

_ainh(a/al)
T(s) = T in ) (4.28)0ainhi(L/a)
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u+} () T. cosh(ala)
ma uinh(L/a)

v+(S) = T. sinh(s/a)
ma sinh(L/a)

2pcIT,
S ) = ma2 I(/a) (coah(a/a) - -2*lr - e- 2(Z',-)/'cosh(L/a))

4 3(8) a2sinh(L /a)(cosh(s/a) - e-2o/, _ e- 2 (•z-./" coah(Lla)).

The correction, therefore, with respect to solution (4.10) is restricted to the boundary

layers formed at the two ends, affecting only the shear force, which is order a, and the

rotational velocity. Here we find w3 = 0 at a = 0, L, which differs form the solution given

in (4.11). The width of the boundary layer was found to be 1/6.

Next we consider the cable with reversing curvature (figure 4.3), which is the prime

example which motivated this analysis. We consider a smooth initial curvature, in the

form:

dO _ tanh(s/c) (4.29)

da a

where e < L, i.e. the reversal in curvature occurs within a small region. Obviously, f

is directly related to the length of the transition region of changing curvature, which in

turn depends on the value of the (usually small) bending stiffness of the cable. The initial

configuration requires a (small) distributed moment in order to sustain the static shape in

the presence of bending stiffness. This moment, however, has an insignificant effect on the

developing dynamic response.

A numerical solution of (4.25) for the curvature specified in (4.29) was obtained using

centered finite differences. Figure 4.4 shows the tension and rotational velocity along the

cable for e = 0.01 and 6 = 1,000. The cable length is set equal to 2. As readily seen, a large

peak in the rotational velocity occurs at the curvature reversing region, which is inversely

proportional to the length over which the curvature reversal occurs (C). Once again the

solution for W& contains boundary layers near s = L and the width of the boundary layer

depends on 6.

69



I

0.8
bei

Figure 4.4: Tension (solid line) and angular velocity (dotted line) developing along a cable
of reversing curvature (figure 4.3).

4.6 Comparison of Analytic and Numerical Results

The numerical techniques presented in chapter 3 were used to simulate the examples dis-

cussed previously. In particular, the explicit finite difference algorithm was used extensively

to model the dynamics in the absence of bending stiffness.

Numerical results were obtained for the cable initially in the form of a circle (figure 4.2).

Figures 4.5, 4.6, and 4.7 show simulation results for the tension and normal and tangential

velocities, respectively, shortly after the impulsive tension was applied at one end. Also

shown are the analytic results derived in section 4.3.2. As shown, the two results are nearly

indistinguishable.

The example involving a cable of reversing curvature (figure 4.3) was simulated numer-

ically as well. A curvature change, as described in section 4.3.4 was implemented, using

a moderately small value'of e = 0.01 to avoid the development of sharp boundary layers.
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Figure 4.5: Analytically and numerically predicted tension along a cable lying in a circle
(figure 4.2) immediately after the application of impulsive loading.
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Figure 4.6: Analytically apid numerically predicted normal velocity along a cable lying in a

circle (figure 4.2) immediately after the application of impulsive loading.
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Figure 4.7: Analytically and numerically predicted tangential velocity along a cable lying
in a circle (figure 4.2) immediately after the application of impulsive loading.

Figure 4.8 shows the normal velocity immediately after the application of the impulsive

load (solid line). This solution coincides with the analytic results, provided a sufficient

number of nodes are used in the numerical scheme to ensure adequate treatment of the

boundary layer-type behavior. As predicted analytically, a steep change in the normal ve-

locity occurs at the point of changing curvature. Also shown is the response at several times

after the initial loading. We find that the effect of the large angular velocity imparted at

the cable midpoint spreads over an increasingly larger region with time, demonstrating the

significance of the mechanism, particularly for small values of e.

In the next chapter, impulsive tension forces are addressed further, in the context of a

harmonically excited hanging chain. In this case, the tension prior to loading varies linearly

along the chain length.
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Figure 4.8: Transverse velocity along cable having initial configuration shown in figure 4.3,
at three time intervals.
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Chapter 5

Analysis of Response of Hanging

Chain

5.1 Introduction

A chain hanging freely under its own weight is subject to a static tension component which

varies linearly over the chain length, beginning with zero tension at the free boundary. As

such, a hanging chain exhibits both high tension behavior (near the top boundary) and

low tension behavior (near the free boundary) along its span. Therefore, the hanging chain

problem affords an opportunity to study the dynamics in both tension regions as well as

the transition between high and low tension behavior.

Herein we investigate the nonlinear dynamics of a hanging chain, driven by a planar

harmonic excitation at the top, first analytically and numerically and then experimentally.

We consider the dynamics of the chain in air to isolate and study the effects of geometric

nonlinearities. As detailed by Triantafyllou and Howell [731, asymptotic results demonstrate

a sensitive dependence on excitation frequency and amplitude. Results for moderately large

excitation amplitudes identify the existence of separate regions of stable two-dimensional

and stable three-dimensional response as a function of frequency, as well as a distinct region

in which all steady state solutions are found to be unstable. Numerical and experimental

studies were conducted to confirm these findings.

The finding of a three-dimensional response to a planar excitation has been shown
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previously by other researchers studying the nonlinear dynamics of cables or strings as well.

Neyfeh [47] and then Miles [42] studied the nonlinear dynamics of a stretched string, pinned

at one end and subject to a harmonic planar excitation over its length. They found that

three-dimensional whirling motions develop over a discrete range of excitation frequencies.

Perkins [54] found similar results for a suspended shallow sag cable subject to an end point

excitation. These previously studied problems differ from the present analysis in that they

each involved a constant static tension along the cable or string. To the author's knowledge,

this is the first asymptotic analysis of a chain with variable static tension.

In this chapter we develop in detail the principal derivations and asymptotic results first

presented by Triantafyllou and Howell [73]. In addition, numerical and experimental results

which were used to verify the asymptotic solutions are discussed. These results have been

summarized in a second paper by Triantafyllou and Howell [72]. Finally, we concentrate on

the response of the chain for larger excitation amplitudes.

5.2 Formulation of the Problem

The problem under consideration is the three-dimensional dynamics of a chain, hanging

freely under its own weight, as shown in figure 5.1. Here we simplify the governing equa-

tions derived in chapter 2 in the following manner. First, chains, unlike cables, are perfectly

flexible and therefore no forces arise due to bending stiffness. Secondly, because we are con-

sidering the dynamics in air, the hydrodynamic effects of added mass and drag are neglected.

This creates some complications in that in the absence of damping, transient motions will

not decay. We therefore will consider the affect of incorporating a linear drag model in

section 5.3.2. Finally, the chain is considered to be inextensible. Due to the condition for

zero tension at the lower end, this assumption is valid provided the excitation frequencies

are small compared to the first elastic natural frequency and the imposed velocities are

small compared to the speed of elastic waves [71].

The governing equations and compatibility relations for the hanging chain problem are

found to be
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.9u LW - LVcos(e)) = OT
f+ -w - v" at- mgcos(4)cos(9) (5.1)

8v 04 04 Pcs9 gi~*m( + L- ucos(9) + -.9jwsin(e)) = L8 cos(O) + mgsin(O)
at atatsOWa_ _8 e.i(e .sTg

m(F . ~vsin(e) - u) = -T- - mgcos(*) sin(e)
Ot as

av 81ucOS(o) + -Lwan(e) = -cos(o)07 + Os7 + at
aw 80* i(9 89
.87 FSVsin(e) - 30 = - t

OU ee o+ - 0 - -- vcos(O) = 0.yo 8.+ as

The chain is considered to be excited harmonically at the top. This excitation is confined

to the global x-y plane and the excitation frequency A is chosen close to one of the natural

frequencies, defined as w. A small transverse velocity is imposed at the top, given by:

v(t,s = L) = aVocos(At). (5.2)

where V. is the velocity amplitude corresponding to a motion amplitude Y. = V.IA and a

is a small positive number, a < 1. In addition, zero tension is imposed at the lower end

(s = 0) and the velocities, u and w are set to zero at the upper boundary (s = L).

Due to the direction of the excitation, we adopt the terminology that v and 0 represent

the in-plane velocity and angle, respectively, while w and 9 represent these quantities in the

out-of-plane direction.

5.3 Analytic Analysis

In this section we derive the analytic solutions using asymptotic techniques. The main

goal of the analytic studies was to determine the response of the chain to a wide range of

excitation frequencies and amplitudes. In particular, the motions at the free end of the

chain are discussed.
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5.3.1 Asymptotic Solution

The first step toward obtaining an analytic solution of the hanging chain equations was to

employ a perturbation expansion. This expansion is made in terms of the small parameter e,

where e is given by a = e. The nature of the equations dictates that the tangential velocity

and tension are even functions in e while the remaining variables include only odd terms.

Therefore, incorporating the static solution, the perturbation expansion can be written as

follows:

U(s,t) = f2 tU2(S, t) + E4 U4(S, t) + 0(0e) (5.3)

v(a, t) = CVx(8, t) + j3[v3(s, 1) + V.cos(At). I + 0(ES)

w(St) = CwI(s,t)+C3w3(s,t)+0(Js)

0(s, t) = to,(a, t) + C3[03(s, t) + -Isin(At)] + O(ts)

8(s, t) = cOI(s, t) + e30(4, t) + 0(EW)

T(s,t) = mgs + ( 2T2(s,t) + C4T4(a,t) + 0(6).

The expanded variables given by (5.3) are substituted into the governing equations and

compatibility relations and terms of each order in c are grouped together. The equations

to first order in t are found to be

0VI 01a
m- - mgs9.s + mgO1  (5.4)

at das

rO- 1  -_ as• - ingot

0t Os"

With regard to the first-order equations, two points are worthy of note. First, as ex-

pected, these equations represent the linear solution of the hanging chain problem. Secondly,

no coupling between in-plane and out-of-plane motions exists to first order.
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The first-order equations can be reduced to the following:

-2 # + a2 L (5.5)

W~e V, 829& = 2gras gs""

These equations are straight-forward to solve using the method of separation of variables

[10] and the solution is given by

01 = A(t)J.(z) (5.6)
z

e1 = B(tO3(z).
z

where z = 2wVi•, J.(z) denotes the Bessel function of the first kind and order n, and A(t)

and B(t) represent time dependent amplitudes. In concurrence with the method of multiple

time scales [4], the unknown amplitudes are decomposed into functions of two time scales,

t and T, where r represents the long time scale, which is given by r = eat, anticipating the

final result. This relation between time scales was selected because secular terms first arise

at order e3. The amplitudes are then expressed as follows:

A(t) = Az(r)eiwt+cc (5.7)

B(t) = BI(r)e• +cc

where i is the imaginary unit, cc denotes the complex conjugate of the preceding quantity.

Using these results, we may now solve for the first-order velocities.

v, = -- L(iAiei'w + cc)JO(z) (5.8)

w,1 = .- (iBe"+ cc)Jo(z).
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The natural frequencies are obtained from the requirement that, to first order in e, the

transverse velocities v and w are zero at a = L. This results in the classical equation for

the natural frequencies of a hanging chain, as given by

Jo(zo) = 0 (5.9)

where

Z.= 24~K (5.10)

The second order equations in e are found to be given by

M(U2 + 881 1 T2 + + 81 (5.11)
at Vt Ot Os

OU2 80 O4 1 DelO"T = -W .
as as 08 *

Solving these equations for T2 and u2 and imposing u2 (t, a = L) = 0, we find

U2 = , + 2 )e Uat + cc)hI(z) (5.12)

T2 = -2 -[(2AA* + 2BB*)Ji(z) - ((A2 + B )e2"" + cc)h2 (z)]

where * denotes the complex conjugate and the functions hi(z) and h2(z) are defined as

follows:

hI(z) = J1 (z) 2 - J 2(z)Jo(z) -J(Zo)

hI(z) = 2z 2(Jo(Z) 2 + Jl(z)2 ) - Jl(z)2 - 2zJI(z)Jo(z) - z2Ji(z.) 2.

Finally, we proceed to investigate the third-order equations in e. The third-order equa-

tions are found to be given by
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9V t(u 2 + eIwO) + - 2 - (5.13)
or at M* L 9  2 Os 6

Oto3  093OW + 9 4903- + 903=

Owl 01 Oq !"2081 + ,913 +,-01 2-
at at M mas 6 2

0103 Oy3  804 1 9(2 - 40 +
a-t- -'-= -0,9+ 67 -t + 2 -t+ Da w)

803 +W3 '1 '1 901
-+ - = -L- + 2- + o 1 1Wq s or Os as

The expressions given by (5.6), (5.8), and (5.12) are introduced into (5.13) and the

spatial dependence is eliminated using a Galerkin procedure in which the resulting equations

are multiplied by the zeroth order Bessel function, corresponding to the nearest natural

frequency, and then integrating along the chain length. Finally, the secular terms are

removed from the resulting equations by imposing the following conditions:

I'dA- = -[f,( + 1)2 + f2leiU? + i[voA2A, + 71-2Af* (5.14)
w dr I

1 dE1  = i[-,oB2B + -y2A2B + 73AIA&BI].

Here the following definitions are used:

4aLl
f2 =

ajL

04

2ol
72 = 2a,-]

06
12a
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where

ko = zo(z)dz

C1 = jo' Zjo(z)2 dz

C2 = fo0O 3jo(z)dz

03 = 1 zJo(z)h 3(z)dz.

014 = J -•o(z) a2(z)J() + J2(z)J,(z) 22- zhl(z)Ja(z) - 2Jo(z)Ja(z) 2 ]dz

s= j JO(z) ()- 2J1 (z) 3 - z 2 hj(z)J1 (z) - 2zJo(z)JIL (z) 2 ]dz

C6= I. JO .)[4zJo(z)JI (ý)2 - 4J, (Z)3 - 2zJi (Z)2 J2(z)]dz= J13(z)hil)J(z) 2Jd~z)3 1

h3(z) J- z + (2J=(Z)2 - h-(Z))L + -L,.

Note that the amplitude of ex.:Lj• -a t is incorporated in the terms fi and 12 and the

excitation frequency is expressed in teims of the detuning a, where

a S= (• 1).(5.15)

The amplitudes are further decomposed as follows:

AI(r) = a(r)e'(') (5.16)

BI(r) = b(r)em(r).

Substitution of these expressions into (5.14) and grouping real and imaginary terms

yields:

I dp _-- q[9 - o,(q2 + p2) - 71(s2 - r2) - 2 -1plra (5.17)
wdr"
1 dq -- [ - 1 (o + 1) 2 +f2]-P{¢- 'o(q 2 +"" 9)+-n/(e 2- r)]+ 2"hqra

wdT1 dr
wdrl -aa- 'yo(r' +8s)- 72(q' -e) - y'3(e +qe)] - 2-2pqr

I d a j- (2 + ,2) + -2(q2 _ P) - 13(P + q2)] - 2-t2pq,.

82



Note that following Miles [42], the phase angles have been removed by setting

p = a(r)sin(f) (5.18)

q = a(r)cos(f)

r= b(r)sin(YI)

a = b(T)COs(17)

where f = or - C, and Yj = or - V1.

Steady state solutions are given by the fixed points of (5.17). Setting the time derivatives

equal to zero, two classes of fixed points are determined. The first class corresponds to a

2-D response, where

p= *a (5.19)

q = r =3=0. (5.20)

From these fixed points, the 2-D solution is given by the following:

ea ±- [fi(a + 1)2 + f 2] - 70oa = 0. (5.21)

The second class of fixed points correspond to 3-D motions. The fixed points are given

by

p = ±a (5.22)

q =0

r = ±bcos( N)

a = -bain(I)

Substitution of these fixed points into (5.17) yields the following:
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yoa2 _yi b2 (_1)N = 0 (5.23)
a
0 - -1062 -12a2(- )1 - =y3a2 = 0.

The solutions given by (5.21) and (5.23) are used to generate response amplitude versus

frequency (or detuning) curves for a fixed excitation amplitude. However, we must first

determine if the corresponding solutions are stable, as discussed in the next section.

5.3.2 Stability Analysis

Stability of the solutions is determined by investigating the eigenvalues of the Jacobian

matrix formed from (5.17). In general, the real part of all four eigenvalues must be less than

zero for the solution to be stable to small perturbations [27]. Otherwise, small perturbations

will not decay in time.

In the absence of damping, the Jacobian matrix for this problem has zeros along the main

diagonal and is separable into two 2 x 2 matrices. As such, all eigenvalues occur in complex

conjugate pairs. Therefore, the only solutions which do not grow exponentially in time

are those in which the eigenvalues are purely imaginary. Generally, solutions with purely

imaginary eigenvalues are considered neutrally stable and are sensitive to nonlinearities.

Incorporating a small degree of linear damping into the governing equations introduces

negative terms along the main diagonal of the Jacobian matrix. The net effect is that

all purely imaginary eigenvalues develop a negative real component. In other words, all

neutrally stable centers become stable spirals or stable nodes, depending on the amount

of damping. This finding is demonstrated in figure 5.2 in which the eigenvalues near a

saddle-node bifurcation are shown with and without damping. As a result, for this analysis

all solutions with purely imaginary eigenvalues will also be considered as stable.

5.3.3 Results

Analytic results, for detuning values near the second natural frequency, are presented for

an excitation amplitude of 0.0087L. Figures 5.3 and 5.4 show the in-plane and out-of-plane
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Figure 5.2: Effect of linear damping on eigenvalues near a saddle-node bifurcation.

velocities, respectively, at the free end of the chain. The velocities are nondimensionalized

by v'fX, which is directly proportional to wL. Note that for clarity, only one branch of the

two-dimensional solution is shown in figure 5.4.

As shown, several bifurcations, labeled from A to D, were found to occur. The bifurca-

tions at A and B are saddle-node bifurcations, while a pitchfork bifurcation occurs at D. At

C, the stability of the three-dimensional branch changes suddenly for increasing detuning

values. The variation of the eigenvalues along the associated three-dimensional branch is

shown in figure 5.5. Based on the variation of the eigenvalues, the stability transition at C

is identified as a Hamiltonian-Hopf bifurcation. This class of bifurcation has been identified

by other researchers in the past (see for example [751).

SAs a result of the bifurcations that occur, a region develops in which no stable reponse

is predicted. For the example shown, this region lies between -0.08 a : _ -0.035. The

dynamics within this region were investigated through numerical and experimental means,
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Figure 5.5: Hamiltonian-Hopf bifurcation: Variation of eigenvalues along 3-D branch.

as discussed later in this chapter.

As the excitation amplitude is increased, the unstable region increases and shifts to a

lower frequency range. This is demonstrated in figure 5.6, in which the excitation amplitude

is shown versus the unstable frequency region. As one would expect, the size of the region

vanishes as the excitation amplitude approaches zero.

5.4 Numerical Solution

The purpose of the numerical analysis was twofold. First, verification of the stable response

regions determined analytically was sought. By solving the fully nonlinear equations, the

effect of higher-order correction terms beyond e3 could be determined. Secondly, the numer-

ical approach provides a means with which to verify the existence of the unstable response

region and Investigate the dynamics within the region.

The second-order implicit finite difference approximation scheme described in chapter 3
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Figure 5.6: Bifurcation diagram: Excitation amplitude versus frequency region in which all

stationary solutions are predicted to be unstable.

was applied to the set of equations given by (5.1). For simulations involving moderately large

excitation amplitudes the tension remains finite; however, for larger excitation amplitudes,

as discussed in section 5.6, the tension does vanish and a small amount of bending stiffness

was incorporated for stability.

Numerical studies were first conducted for detuning values at which the analytic tech-

nique predicted a stable response. As shown in figure 5.7, good agreement was obtained

between the analytical and numerical solutions. Both the character of the response, i.e.

stable 2-D or 3-D, and the magnitude compared favorably. It should be noted that a small

amount of linear damping, corresponding to less than 1 percent critical, was incorporated

to eliminate starting transients.

A numerical analysis of the unstable region (-0.08 :5 a, : -0.035) was also conducted

and results are presented for a = -0.06 and -0.05. Figure 5.8 shows the time series records

for the in-plane and out-of-plane transverse velocities at the free end of the chain for o
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Figure 5.7: Numerical results (circles) compared with perturbation results (lines): In-planevelocity at lower end for excitation amplitude Y. = 0.0087L.

= -0.06. The response is charac:terized by slightly irregular beating, despite the fact that
sufficient time has elapsed to eliminate starting transients. The power spectrum for the in-
plane response (figure 5.9) shows a widening of the frequency content around the frequency
of excitation. Further insight into the nature of the response is provided by constructing a
Poincare plot (figure 5.10) [5). As shown, at this excitation frequency the beating motion

is only slightly irregular and the response is close to quasi-periodic.
Time series records for the detuning value a, = -0.05, which lies further inside the

unstable response region, are shown in figure 5.11. As shown, the response is characterized
by irregular beating and the associated power spectra (figure 5.12) also demonstrates a
widening of the spectrum near the excitation frequency. The Poincare plot (figure 5.13)
exhibits a much more detailed structure than for the previous case.

Simulations were also~conducted in which, after the starting transients had decayed,
damping was removed using a linear ramping function. Steady state solutions were found
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to be only slightly affected. However, for simulations within the unstable frequency region,

the chain was found to lose tension and collapse. This prevented obtaining long time series

records, as required for Poincare plots. This topic is addressed further in section 5.6.

5.5 Experimental Study

Experiments were conducted to verify the analytic and numerical results. The relative

simplicity of the physical problem under study allowed for a simple experimental setup.

However, the analytic results show a sensitive dependence on the excitation frequency and

amplitude, therefore, strict control was maintained over these two input parameters.

5.5.1 Experimental setup

Experiments were conducted at the MIT Ocean Engineering Testing Facility. A 1.75 me-

ter chain was selected, having its second natural frequency at 1.04 hertz. Excitation of

the chain was accomplished by a LINTECH leadscrew positioning table, with a travel of

±8.5 centimeters, driven by a microprocessor-controlled SEIBERCO AIM-3400 closed-loop

digital servomotor. The tracking signal input to the servo controller (corresponding to the

desired motion at the top of the chain) was calculated in real time, by a NEC Powermate

1 286-class computer, from an initial user specified set of parameters and generated with

the help of an onboard METRABYTE DASH-16 12 bit D/A converter. An analysis of the

system determined that errors in the excitation frequency and amplitude were maintained

below 1 and 5 percent, respectively. An overview of the experimental setup is shown in

figure 5.14..

Several points along the chain were illuminated, using cotton balls soaked in a light

emitting fluid, and their in-plane and out-of-plane displacements recorded on video tape

using two separate PANASONIC PV160 video cameras. Displacement time series records

were then generated from the video data using a MOTION ANALYSIS VP110 motion

analyzer, located at the Woods Hole Oceanographic Institute, which calculates the center

of intensity and resulting motion of each light source on the chain.
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Figure 5.15: Experimental results (circles) compared with perturbation results (lines): In-
plane velocity at lower end for excitation amplitude Y. = 0.0087L.

5.5.2 Experimental Data

A number of experimental runs were conducted for detuning values at which a stable re-

sponse was predicted analytically. Good agreement was obtained between methods, as

shown in figure 5.15. The character of the response, as well as the amplitude, matched

favorably and the results proved stable to perturbations.

Based on preliminary experimental runs, the frequency region characterized by irregular

response appeared to be shifted to slightly higher frequency values than predicted analyt-

ically. This trend is apparent in figure 5.15. Overall, however, the shift in frequency was

found to be less than 2 percent.

Time series records, presented in figures 5.16 and 5.17, show the experimentally obtained

in-plane and out-of-plane velocities at the free-end for detuning values of -0.028 and -0.047,

respectively. As shown, the response is irregular, despite ramping the excitation amplitude
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Figure 5.18: Power spectrum of in-plane velocity shown in 5.16.

up to the desired value and allowing sufficient time for starting transients to decay. The

associated power spectra (figures 5.18 and 5.19) show a marked widening of the spectrum,

around the excitation frequency. This is in contrast to the narrow banded spectra obtained

at other excitation frequencies.

5.6 Response to Large Amplitude Excitation

In this section we investigate the response of the chain to excitation amplitudes in excess

of those studied previously. Much of the work detailed here is summarized in a paper by

Howell [23].

As discussed earlier the asymptotic analysis results predict that increased excitation

amplitude widens the frequency region in which all steady state solutions are determined

to be unstable. Therefore it Is logical to investigate unsteady solutions for larger excitation

amplitudes. However, the numerical scheme was found to encounter stability problems when

bending stiffness was neglected. In addition, solutions within the unstable frequency range

were found to be unobtainable numerically when damping was removed. To understand why
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Figure 5.19: Power spectrum of in-plane velocity shown in 5.17.

this occurs, we further investigate the perturbation results to determine if it is possible for

the dynamic tension to cancel the static tension, thereby causing the chain to lose tension

over a portion of its length. Here we simplify the analysis by concentrating on the region

near the lower boundary because that is the location where it is most likely that tension

will be lost.

Using the previously obtained results we find that

lim T2(s, t) + mg, = a21 k (
3 - 4J1 (5 o)2)] + 4

S-.o mg. 4

Therefore, if we express the condition for negative tension values to occur in terms of the

angle at the free-end we find

a > 2J,(so), (5.24)

In terms of solutions near the second natural frequency, this means the angle must

exceed 1.61 radians for the tension to become negative. This corresponds to the free-end of
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the cable slightly exceeding a horizontal orientation.

This analysis shows that, according to the perturbation technique, above a certain level

of response amplitude, and near resonance, negative tension occurs near the free end. Since

negative tensions cannot be sustained, the chain loses tension over a portion of its length.

This leads to increased angles, eventually resulting in the chain collapsing.

Numerical and experimental tests were conducted at larger excitation amplitudes aimed

at verifying the numerical model so that it could be used as a tool for studying the dynamics

leading to the collapse of the chain. Results are presented herein for an excitation amplitude

of 0.017L and a frequency of 1.5 hertz, corresponding to a detuning of 0.44. The excitation

amplitude was ramped linearly in time over 2.0 seconds. This short ramping interval was

chosen to simplify the analysis by not allowing sufficient time for exciting dynamics out-of-

plane. A number of ramping intervals were investigated and quantitatively similar results

were obtained in each case. Therefore, the ramping interval selected is not of importance.

Numerical studies were first conducted neglecting bending stiffness. Numerical results

for the chain shape at several different time steps, prior to the loss of tension, are shown in

figure 5.20. The lower one-fifth of the chain has been enlarged to show that only a small

segment of the chain loses tension. After tension is lost, the numerical scheme becomes

unstable and fails to converge.

As discussed previously, the cable equations are singular for zero tension if bending

stiffness is neglected. There is an additional singularity, however, when the tension becomes

zero which appears in the compatibility relations.

The compatibility relations derived in chapter 2 are based on spatial and temporal

continuity of the position vector F(t,a).

Once tension is lost, however, there is no physical mechanism that enforces slnpe continu-

ity in the line. It is possible for a perfectly flexible cable to form comers in its configuration.

As a result the compatibility relations in differential form, as derived in chapter 2, are invalid

once tension is lost and a new set of compatibility relations must be devised to preserve

the chain length. One could also model the chain as a series of rigid links, however, this

would require an inordinate number of degrees of freedom thereby significantly reducing the

computational efficiency..
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Figure 5.20: Numerical results: Chain configuration at several times prior to the collapse
of the lower region. Segment in box enlarged on the right.

Both problems, i.e. the singularity in the equations of motion and the discontinuities

in slope, are eliminated by incorporating bending stiffness. Bending stiffness smooths out

discontinuities, as addressed in chapter 4, and provides a physical mechanism for energy

propagation in the absence of tension. For cables bending stiffness is the actual physical

mechanism that must be included for accurate modelUing For chains the link interaction is

far more complex to model, so we treat the chain as a highly flexible cable by adopting a

small value of bending stiffness as a mathematical fix of the singularities encountered. The

numerical procedure for incorporating bending stiffness presented in chapter 3 was adopted

for this analysis.

Numerical results after the chain has lost tension and collapsed were obtained using a

nondimensional bending stiffness value of EI/mgL3 = EP" = 10-6. Computations pro-

ceeded through the onset-of zero tension, eventually determining one-half cycle later that,

after tension has been restored, the chain intersects itself as shown in figure 5.21.
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Figure 5.21: Numerical results: Predicted chain configuration as free-end intersects the
chain.

To demonstrate that incorporating bending a small degree of bending stiffness eliminates

the zero tension singularities, while not significantly altering the solution, figure 5.22 shows

numerical results for two values of E/P. As shown, similar results are obtained for an order

of magnitude variation in flexural stiffness. Note that this is attributable to the magnitude

of the bending stiffness incorporated.

Figures 5.23 through 5.26 show the numerically obtained time series records for the

tension, tangential velocity, normal velocity, and angle, at four locations along the chain.

Figure 5.23 clearly depicts the transition from low to high tension. Near the lower boundary,

impulse-like tension peaks are exhibited, followed by periods in which the tension is nearly

zero. These tension peaks result in rapid variations in velocity, as shown in figures 5.24 and

5.5. Further up the chain, the response remains regular and behaves like the response of

a taut cable. In contrast% at the lower end the angle increases beyond the value of z, at

which time an entire segment of the chain loses tension and collapses (figure 5.26).
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Figure 5.22: Comparison of simulation results for two values of EP*.

The normal velocity along the chain is shown in figure 5.27 for four different times.

As shown an energy wave is generated at the top which amplifies as it travels toward

the free end. Steep gradients in velocity develop which in turn give rise to large angular

accelerations. Eventually the angular momentum builds to where the tension is canceled

and the angle increases beyond r.

The dynamic tension along the chain, obtained by removing the static tension from the

total tension, is shown in figure 5.28 for the listed times. Figure 5.28 clearly demonstrates

that low tension effects are confined to a region encompassing less than 10 percent of the

total chain length, while the remaining chain exhibits a taut cable response.

Figures 5.29 and 5.30 compare experimental and numerical results for the chain dis-

placement at three different times. The lower half of the chain is isolated In figure 5.29,

while the lower one-.eighth Is shown in figure 5.30. Not? that the numerical results were

obtained using the small value of bending stiffness discussed previously. As readily seen the
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Figure 5.29: Comparison of experimental and numerical results for collapsing chain: lower
half of chain.

numerical technique accurately predicts the displacement up to the point where tension was

lost and good agreement was found at the point where the chain intersects itself (t=3.8 s,

figure 5.30).

Figure 5.31 depicts the experimental results for the chain intersection with itself. This

intersection was found to occur at the same time predicted numerically. It should be noted

that the experimental tests did remain two-dimensional as demonstrated by the free-end

colliding with the chain.
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Chapter 6

Analysis of Elastic Cable Behavior

6.1 Introduction

Up to this point, we have considered the dynamics of cables with infinite elastic stiffness. In

this chapter we relax this restriction and incorporate elasticity in the equations of motion.

The effects of elasticity can be separated into two categories; quasi-static stretching and

elastic or longitudinal waves. The significance of quasi-static stretching has been the subject

of extensive research in the past (see for example [26], [63], and [67]) and will be addressed

in section 6.2. Insight into the importance of elastic waves can be gained by considering the

relative magnitudes of transverse and elastic wave speeds. Bliek [6], using the method of

characteristics, derived expressions for the transverse and elastic wave speeds Ct, and C.,,

respectively, for an elastic cable. Assuming a linear stress-strain relation, the expressions

are given by

cir = T m-m:)(1 12e)J (6.1)

C., = k[EA 1 •2  (6.2)

Therefore, the ratio of wave speeds is roughly given by

C rEAl12  (6.3)
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For low tension values this ratio is very large, therefore, the fundamental frequency of

elastic waves corresponds to a very high-order transverse mode. If the cable tension is large,

it must still remain below an upper bound given by the breaking stress. For metallic cables,

the upper bound is given by

TT- = A < ub < E (6.4)

where i and p# denote the axial and breaking stress, respectively. Therefore, for metallic

cables, the ratio of wave speeds remains high regardless of the cable tension [69].

For the reasons discussed above, if the excitation frequency is narrow-banded and corre-

sponds to a low-order transverse mode, it can be assumed that elastic vibrations will not be

excited. However, if the excitation frequency is broad-banded, sufficient energy may exist

at high frequency to excite elastic waves.

The results derived in section 5.6 (figure 5.23) demonstrate that the response of the

hanging chain to large amplitude excitation is characterized by impulse-like tension peaks.

The energy content of these tension peaks is broad-banded, which brings into question the

validity of neglecting elasticity in this case.

To resolve this question, a linear stress-strain model was incorporated into the implicit

finite-difference algorithm discussed in chapter 3. An implicit time domain routine is nec-

essary as the high propagation speed of elastic waves would require prohibitively small

time-step increments in an explicit algorithm [60]. To validate the model, we consider the

linear dynamics of an elastic catenary, as discussed in the next section.

It should be reiterated that a major reason for the increase in low-tension systems is

the frequent use of synthetic cables. Aside from the decrease in density, the modulus of

elasticity E of synthetic cables is appreciably less than that of metallic cables. As a result,

synthetic cables have reduced axial and flexural stiffness than metallic cables of equivalent

size. The reduction in flexural stiffness simplifies storage and handling of the cable. This

in fact is one of the major benefits of synthetic cables. The low axial stiffness, however,

can result in substantial stretching and thus a large buildup of potential energy. This

makes synthetic cables extremely dangerous in failure. For this reason, and the fact that

the dynamics of highly extensible cables are not fully understood, large s;i rety factors are
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used in design and the diameters selected are often much greater than necessary, thereby

reducing their benefits to some degree. The topic of highly elastic cables is the subject

of on-going research at the Massachusetts Institute of Technology, under the direction of

Professor M.S. Triantafyllou.

6.2 Elastic Motions of Shallow Sag Cables

The elastic dynamics of suspended cables undergoing quasi-static stretching, i.e. no elastic

waves are excited, has received considerable attention. Much of the research was aimed at

resolving a discrepancy between taut-string results and inelastic horizontal catenary solu-

tions in the limit that the cable sag to span ratio approaches zero. A clear explanation of the

phenomena involved was presented by Irvine and Caughey [26]. Their results demonstrate

that the significance of elastic effects is governed by the ratio of elastic to catenary stiff-

ness, denoted as A2 . Also shown was that for shallow sag cables, the fundamental natural

frequency of symmetric modes crosses the fundamental frequency of antisymmetric modes

at a critical value of A2, the so-called mode cross-over phenomena. Triantafyllou and Grin-

fogel [69] show that the dynamics of inclined cables are distinctly different than those of

horizontal cables in that frequency cross-overs do not occur and that large dynamic tension

amplification occurs in the region of avoided crossings. Their results are based on more

general asymptotic solutions, also derived by Triantafyilou [67], in which elastic waves are

retained.

For completeness, we derive the linear solutions presented by Irvine and Caughey [26]

in terms of body-fixed coordinates. These results are then used to verify the accuracy of

the numerical algorithm.

6.2.1 Derivation of Linear Equations

We consider the dynamics of a perfectly flexible cable supported by two frictionless end

supports at the same level, as shown in figure 6.1. The cable is assumed to have a small

sag to span ratio, i.e. 6/S < 1/8 where 6 and S denote the cable sag and span respectively.

Irvine and Caughey [26] have shown that within the linear regime, i.e. small motions, the
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Figure 6.1: Cable suspended between two endpoints.

out-of-plane dynamics decouple from in-plane dynamics. This is because, to first-order,

out-of-plane motions involve not additional cable tension. In addition, RegL et al [57]

demonstrated that for nonlinear motions, planar oscillations are stable, with the exception

of the case where the in-plane linear frequency is twice the out-of-plane natural frequency.

As such, in this section we restrict our attention to two-dimensional dynamics. The two-

dimensional governing equations and compatibility relations for an elastic cable, as derived

in chapter 2, are given by

M(--- = L-,-Wosino (6.5)

Ot at as
V '0D 0

as Ts- ;atr
av~ +UD -0(1+ e)

T EAe.
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Here we have adopted the same nomenclature defined in chapter 2, with the exception that

the angle 0 is measured with respect to the horizontal, rather than the vertical, as shown

in figure 6.1.

We seek to study the linear dynamics of the cable by considering small motions from the

static configuration. Toward this end, we decompose the variables into static and dynamic

terms as follows:

T = To+ T' (6.6)

-0= 00 + 01

C = eo

where the subscripts 0 and 1 denote static and dynamic quantities, respectively, and all

dynamic quantities are assumed to be of order 0(e), where c < 1.

Eliminating all dynamic quantities from (6.5) yields the equations of static equilibrium.

STO = w .sin . (6.7)

To!- = w. cos 4'oa.
To = EAeo.

The solution of (6.7) gives the shape of the catenary. These equations can be written in a

more convenient form as follows:

TO H (6.8)
cos o

0 28.• Icos6(•o)

where H is the horizontal component of the static tension and a is given by

tvoLaffi---. 
(6.9)
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For cables with small sag to span ratios, the slope of the cable is everywhere small.

Therefore, cos(Oo) t- 1 and the static solution can be expressed as

To H (6.10)

sin 0o -= 460 2! 1-s.

For small motions we can approximate the velocities in terms of small displacements

from the static configuration, as follows:

u OP (6.11)

Oq
a t

where p and q are the tangential and normal displacements from the static configuration,

respectively.

Substitution of (6.6), (6.10), and (6.11) into (6.5), removing the static solution, and

retaining only first-order quantities yields

8 2p OT1  aH
71-7 2  = O-- -L (6.12)

02q a 00,
m -Z = I L-+ Ha

Op a T=
Oj -- L = -E A
Oq a

Note that we have removed the time derivatives from the compatibility relations by inte-

grating the two equations in time. For small displacements, longitudinal motions are small

compared to transverse motions. As such,

P- ! C (6.13)
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therefore, we can neglect this term form the final equation in (6.12).

We eliminate the time dependence in (6.12) by considering harmonic motions, and ex-

press the variables as follows:

(6.14)

0 1 =q

T, = re"

where w is the natural frequency of vibration. Introducing (6.14) into (6.12) yields

2- OT=ý

- Tp -t). L (6.15)

-rnw24 = ta-- 'T1

L Os
3' -• = TAOsL -z =LA

Finally, we integrate the first equation in (6.15) with respect to space yielding

T(s) = h + jo(ýa- _- mIUJ 2 )ds (6.16)

where h is a constant. Assuming quasi-static stretching, no significant longitudinal dynam-

ics are excited. The basis of this assumption is that for metallic cables, transverse wave

speeds axe, in general, much smaller than those of longitudinal waves 16]. Therefore, for

low frequencies, longitudinal wavelengths are much greater than the overall cable length.

However, for high excitation frequencies, longitudinal wavelengths may be less than L, and

the quasi-static stretching assumption is no longer valid. This is an important considera-

tion which must be taken into account in considering synthetic cables, which have a smaller

Young's modulus than metallic cables, and therefore, smaller longitudinal wave speeds.

114



Introducing (6.16) into (6.15) and combining expressions yields

102 #2 haDA+ -2a. h- (6.17)

Ya - q! FA 6.8

where

/3=wV• (6.19)

These equations are equivalent to the linear equations derived by Irvine and Caughey [26]

and can be combined to form a single equation in 4Ks). Toward this end we integrate (6.18)

along the cable and impose the boundary conditions P(-L/2) = (L/2) = 0, which yields

LAct L/2
h = _ -EA- 44d. (6.20)

L2 J-L2

Substitution of (6.20) into (6.17) yields the linear equation for transverse motions.

02-+~ A2 jL/2
- L0 =_rds (6.21).9 2• Z J-'/2

where

A2 = (-A)(WOL)2 (6.22)

6.2.2 Analytic Solution of Linear Equations

Solutions of (6.17) and (6.18) can be separated into two classes of mode shapes, i.e. sym-

metric and antisymmetric modes. Herein, a symmetric in-plane mode is defined as a mode

in which the vertical component of the mode is symmetric, and vice-versa. We will treat

the two classes separately.

We first consider antisymmetric modes. According to (6.20), the additional tension

component h is zero, independent of the cable elasticity. Therefore, (6.17) reduces to

020
S+ #2 = 0. (6.23)

Solving this equation and imposing the boundary conditions 4(0) = 4(L/2) = 0 yields
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S= A.sin(--2--n (6.24)

where the nondimensional frequencies are given by j,.L = 2nr and n = 1,2,3 ....

We next consider antisymmetric modes. Solving (6.17) and imposing the boundary

conditions 4(-L/2) = 4(L/2) = 0 yields the following expression for i(s):

ho , cos(&/) (6.25)

In order to determine the natural frequencies, (6.25) is substituted into (6.21), providing

the following transcendental equation for PL:

tan(13L/2) = OL/2 - l--(3L/2)- (6.26)

As stated by Irvine and Caughey [26), (6.26) "is of fundamental importance in the theory

of cable vibrations." In physical terms, A2 expresses the ratio of elastic to catenary stiffness.

For cables with low elastic stiffness, i.e. \ 2 _. 0, we recover the classic solution of the taut

string equation, where

lirn #jL = (2n - 1)7r, n = 1,2,3... (6.27),\2-.0

For large values of A2, the cable can be considered inextensible, and (6.26) reduces to

the transcendental equation for an inextensible catenary, where

tan(-L) = /_L (6.28)

This equation was first derived by Rohrs [58] and the first two roots are given by

Pm /i31L = 2.86ir, 4.92r. (6.29)

As derived previously, the fundamental frequency of antisymmetric modes is given by

PIL = 2x. However, as we have shown, solutions for the two limiting values of \ 2 fall

on either side of this value. The relationship between ,\ 2 and the first root of (6.26) is
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Figure 6.2: Dependence of fundamental natural frequency on A.

shown in figure 6.2. Of particular interest is that symmetric natural frequencies cross the

antisymmetric frequency for increasing values of A2 . The cross-over point for the first mode

corresponds to A = 2r, and a steep transition in frequency occurs near this value. Similar

frequency cross-overs occur at other modes as well [7).

The mode shapes for longitudinal modes can be determined by introducing (6.25) into

(6.18) and integrating along the cable from -L/2 tos. Imposing the boundary condition

P(-L/2) = 0 yields

h ,a( .,.L) 2, 1 sin(Ps)
P() = f-f•.[-J Lt J t+ L/2) + •"cos(13L/2) + tan(OL/2)) - (a+ L/2)]. (6.30)

Note that for symmetric normal modes, longitudinal modes are antisymmetric.
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6.2.3 Numerical Results

In order to verify the numerical algorithm's ability to model elastic cable behavior, simula-

tions of the suspended catenary problem were conducted for a range of A values. Specifically,

we attempt to demonstrate numerically the transition in mode shapes predicted by linear

theory.

As discussed, the linear equations are derived on the basis of small displacements from

some known static configuration. Therefore, because the nonlinear terms are retained in

the numerical model, excitation amplitudes were maintained at small values. A separate

routine was developed to calculate the static shape, as input to the dynamic algorithm. In

addition, the boundary conditions were modified, with the new conditions being given by

u(t, -L/2) = 0 (6.31)

v(t,-L/2) = 0

u(t, L/2) = 0

v(t,L/2) = 0

Numerical solutions were obtained using a cable of unit length and the nondimensional

parameters a = 0.1 and /H ff= 0.01. The normal and tangential velocities along the cable

were initialized according to the linear solutions given by (6.25) and (6.30), respectively.

Numerical results for the calculated symmetric mode shapes, after 20 cycles have elapsed,

are shown in figures 6.3, 6.4, and 6.5 for A = r, 27r, and 37r, respectively. Also shown

are the linear results derived in the previous section. As readily seen, the two results

are indistinguishable and the numerical algorithm is able to accurately model the modal

transition that occurs.

6.3 Extensible Dynamics of Hanging Chain

The asymptotic and numerical solutions of the hanging chain problem presented in chapter

5 were obtained under the assumption that the chain was inextensible. In this section, we
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Figure 6.3: Transverse symmetric mode shape for A = x; numerical and analytic results
shown.
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Figure 6.4 Transverse symmnetric mode shape for A = 2r (cross-ovr point); numerical and
analytic results shown.
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Figure 6.5: Transverse symmetric mode shape for A = 3r; numerical and analytic results
shown.

consider the extensible chain dynamics to verify the validity of this assumption. In addition,

the effects of reducing the elastic stiffness in the chain are investigated to determine at which

point elasticity becomes important.

6.3.1 Moderate Excitation Amplitudes

The chain used throughout the experimental tests was comprised of steel links, roughly

5 mm in diameter. The equivalent nondimensional elastic stiffness was found to be on

the order of EA/wL = EA* = 4 x 105 . This value will be used as a reference value for

determining the validity of neglecting elasticity. For this value of EA*, the ratio of elastic to

transverse wave speeds of of order 600 or greater. A synthetic chai. of the same dimensions

would have a ratio on the order of 60. The ratio of the fundamental elastic frequency to

the driving frequency, assuming the elastic frequencies correspond to those associated with

free-fixed end conditions, Is given by
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= (6.32)
j3,(1 + a)

where P. is the nth root of the Bessel function of the first kind and order 0.

Numerical simulations were conducted using the excitation amplitude given in section

5.4 (Y. = 0.0087L), for a range of EA* values. The excitation frequency was chosen to

correspond to resonance, i.e. a = 0. Figure 6.6 shows the tension time history, at four

locations along the chain, obtained using EA' = 4 x 103. Also shown are the results

for the inextensible chain. As readily seen, elastic effects are insignificant for values of

elastic stiffness above this value. This is attributable to the excitation frequencies remaining

in a narrow frequency band, weli below the elastic frequencies. Therefore, for moderate

excitation amplitudes, it proves valid to neglect elasticity.

Numerical results are shown in figure 6.7 for a chain with very low elastic stiffness

(EA* = 100). The results show only a slight shift in frequency and amplitude occurs due to

elasticity. The first elastic natural frequency, in this case, is roughly 8 times the excitation

frequency.

6.3.2 Large Amplitude Excitation

Here we consider the large amplitude response of a chain with elasticity. Results are pre-

sented for the three cases listed in table 6.1. Figure 6.8 shows the tension time history, at

four points along chain, using the value EA* = 4.0 x 104 (case 1). Note that this value is an

order of magnitude below the reference value. As readily seen, elasticity does not affect the

chain's dynamics for this case as elastic waves are not excited. These results show that the

excitation energy, although broad-banded near the point of the chain's collapse, remains

below the fundamental frequency of elastic waves. The frequency ratio in this case is large,

as shown in table 6.1. Based on these results, and the results presented in the previous

section, we can conclude that the results obtained in chapter 5, which are based on the

assumption the chain is inextensible, are valid.

We next consider the effects of reducing the elastic stiffness further (cases 2 and 3).

For case 2 we find that elastic waves do begin to develop (figure 6.9) after the tension

peaks become sufficiently narrow in time, i.e. begin to look impulsive. Prior to the point
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Figure 6.6: Comparison between tension time history at four locations along chain for
inextensible chain and elastic chain (EA*= 4 x 103).
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Figure 6.7: Comparison between tension time history at four locations along chain for
inextensible chain and elastic chain (EA* = 200).
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Figure 6.8: Comparison between tension time history at four locations along chain for
inextensible chain and elastic chain (EA* = 4.0 x 10").

of maximum tension, no elastic effects are present. The observed frequency of the elastic

waves (table 6.1) differs from the value predicted by linear theory by roughly 14 percent.

As shown in figure 6.9, the elastic wave amplitude grows in the direction away from the

free boundary. The tension variation the occurs due to the elastic waves can be isolated

by removing the tension found for the inextensible case. Here we find an interesting result.

The elastic waves that form are not travelling waves. Instead, we find that a standing

wave develops that encompasses the entire chain. The mode shape of this standing wave is

Case# EA* e (linear) w" (observed) r.

1 4 x 104 314. - 80
2 4 x 103 99.3 113.
3 4 x 104 31.4 36.6 "

Table 6.1: Case studies for analysis of elastic affects.
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Figure 6.9: Comparison between tension time history at four locations along chain for
inextensible chain and elastic chain, EA* = 4.0 x 103.

shown in figure 6.10, along with the linear mode shape of a straight cable with free-fixed

boundary conditions. As shown, the largest discrepancy occurs near the free-end. In this

region the curvature is greatest and curvature has been shown to have a significant affect on

the elastic frequencies and mode shapes [9]. Curvature effects, therefore, may also account

for the discrepancy in the observed elastic frequency.

Further proof that the elastic waves are stationary is provided by a contour plot of the

elastic tension variation along the chain in time (figure 6.11). As shown, the characteristics

are vertical, indicating elastic energy does not travel along the cable. If the elastic waves

did travel, the characteristics would have a finite slope, given by the elastic wave speed.
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Figure 6.10: Mode shape for tension variation due to elastic waves, using EA*= 4.0 x 103.
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Figure 6.11: Contour plot of elastic tension variation in time and space for EA = 4.0 x 10 3 .
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Similar results were obtained for still further reductions in the value of EA' (case 3).

Here, however, we find that elastic waves begin to develop at lower tension amplitudes

(figure 6.12). In this case the fundamental elastic frequency is much closer to the excitation

frequency, i.e r. = 8. Again we find that the elastic waves are stationary and qualitatively

similar results are found for the mode shape (figure 6.13) and characteristics (figure 6.14).
1.00

-w

------ EA.a4.052

0.65
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S=O.5L""

tit I|
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1.00 1.55 2.10 2.65 3.20
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Figure 6.12: Comparison between tension time history at four locations along chain for
inextensible chain and elastic chain, EA* = 4.0 x 102.
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Figure 6.13: Mode shape for tension variation due to elastic waves, using EA = 4.0 x 102.
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Figure 6.14: Contour plot of elastic tension variation in time and space for EA*= 4.0 x 102.
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Chapter 7

Applications

7.1 Introduction

In this chapter we consider applications of the methodology presented in previous chapters.

In particular, we consider the coupled dynamics of a remotely operated vehicle (ROV)

employing a low-tension tether.

7.2 Coupled Low-Tension Tether/Vehicle System

Tethered remotely operated underwater vehicles are use extensively by the offshore industry

and oceanographic research community. The ROV systems that have been developed can

be separated into two classes. The first entails a direct connection from the surface to a

heavy vehicle, through a highly tensioned cable. As such, the vehicle is directly coupled

to the ship motions. To eliminate this coupling, an alternative system has been developed

which Is comprised of two components. The neutrally buoyant vehicle is connected by a

low-tension tether to heavy working platform, which in turn is connected to the surface by

a high tension cable as shown in figure 7.1. This decouples the vehicle from the sea surface.

Here we focus on the coupled dynamics of the low-tension tether and vehicle.

Simulations are conducted using the algorithm developed for low-tension cables, com-

bined with a dynamic model of the ROV [24]. A number of vehicle-tether simulation

techniques have been developed previously (see for example [3], [38], [70]). However, these
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Figure 7.1: Two component remotely operated underwater vehicle system. (Courtesy of

the Woods Hole Oceanographic Institution).
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Figure 7.2: Tether and vehicle coordinate systems.

models greatly simplified the implementation of the cable dynamics.

7.2.1 Equations of Motion

The equations are derived for motion in the vertical plane and include gravitational forces.

For simulating motion in a horizontal plane, all the gravitational forces are set equal to

zero.

Separate body-fixed coordinate systems are used for the tether and the vehicle (figure

7.2). For the tether, we employ the coordinates t and A defined in chapter 2. We consider

the vehicle to be a rigid body and place the origin of its coordinate system at its center of

gravity. The z-axis defines the direction of surge motion and the p-axis defines the direction

of heave motion.

The ROV operates in a spatially uniform current of magnitude J. The direction of the

current is constant though the magnitude can vary with time. We define a global coordinate

system such that the X-axis is parallel to the current direction. Transformation from the

moving coordinate system of the vehicle to the global coordinate system is accomplished
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through an Eulerian transformation.

The equations for the tether and the vehicle are presented separately and these results

are then coupled through a set of relations.

Tether Equations

We are interested in accurately modeling the low-tension behavior of tethers. As such, we

retain the effects of bending stiffness and consider the tether as inextensible. The two-

dimensional governing equations and compatibility relations, as derived in chapter 2, are

given by

u _ - v-O OT - sin4'- I pdCdtruluI + EI-- (7.1)

in - + u.00) + m.-- - T- - wcos4$- pdCdfv,lv, l - EI4 -

04' Ov +040

8u 04'
0-; = v

where T denotes the effective tension, u,. and i,. are relative velocities defined by:

u,= u- Jcos4' (7.2)

vr= v +J3sin4

Vehicle Equations

The governing equations for planar motion of the vehicle, as derived by Moxnes [46], are
given as follows:
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(M + AII)L--•Ut - (MV + AV',)-C-=
(B- W)sin4 + H,+ R.+ T,+ Sg (7.3)

(M + A22)- + (MU + A2 2 U,)- -

at at
(B- W) cos4' + Hy + R,+ Tv + Sy (7.4)

024
(I., + Aew).ý- = zbB cos t - ybB sin 4

D4 04',)
-Cdo,- , + R, + R o(T" + S1) - e(Tx + S.). (7.5)

at lot

The left-hand-side of .7.3)-(7.5) are the inertial forces. The surge velocity is U, the heave

velocity is V, and the pitch angle is 4. M is the vehicle mass and I. the moment of inertia

about the z-axis. All, A2 2 , and A66 are the added masses for surge and heave and the

added moment of inertia for pitch, respectively. Coupling terms involving added mass and

added moments of inertia have been ignored. The relative velocities U, and V, are defined

as:

U, = U-Jcos0 (7.6)

V, = V+Jsin4'.

On the right-hand-side of the equations of motion are the forces acting on the vehicle.

These include gravitational forces and moments due to the vehicle's weight W, buoyancy

B, and location of the center of buoyancy (z., Sib). The forces and moments due to the

thrusters are given by R,, P,, and R#. The hydrodynamic drag forces in (7.3) M,.,d (7.4)

are given by H. and Hr. Expressions for these are described in the next paragraph. The

hydrodynamic drag moment in (7.5) is assumed to be proportional to the square of the

angular velocity. The proportionality constant Cg, can be estimated from experimental

data or approximated using strip theory [48]. The remaining forces in the equations of
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motion, Tz, TV, Sr, and Sv, are the forces associated with the tension and bending of the

tether. They are defined by the following expressions:

Tx = T[cos 0. cos 4 + sin 'o sin 4] (7.7)

Tv = T[sin 0o cos 4 - cos osin 0]

S, = -I 92 COS.Sin4 - sin cos 0]

S2 = -E/--±[cos COs4 + sin . sin 4,]

&.2

The variable 0. denotes the value of the tether angle at the connection point between the

tether and the vehicle. These forces produce moments whenever the tether connection point

(zn, y,) is located away from the center of gravity.

The dependence of drag on the relative orientation of the vehicle to the flow can differ

greatly, depending on the characteristic shape of the vehicle. The hydrodynamics involved

can become quite complicated and are beyond the scope of this study. Often the angular

dependence of drag, for a particular vehicle, is determined experimentally and the calculated

drag coefficients are used in a look-up table within the simulation routine [28]. Here we adopt

two alternative empirical relations for obtaining rough estimates of the hydrodynamic forces

H. and H.. These models are based on experimental data collected at the MIT Ocean

Engineering Testing Facility [24]. The first model is used for bluff-shaped bodies, where

separation effects are important. It is given by:

Hz = - pAU, (7.8)

IIH = -IpApV,

where A, is the projected area and is equal to:

Ap = C AIUI + CdvAIVI (7.9)

where Cdz and C¢.r are the drag coefficients in the vehicle's z and y-directions, respectively.

133



A, and A. are the cross-sectional areas of the vehicle with outward nornials parallel to the

z and 1-axes of the vehicle. The relative velocities U, and V,, are defined in (7.6).

For simulations involving a streamlined body, it is more precise to use the following

model for the hydrodynamic drag.

H. = -!PA.C iU7 UJI (7.10)
1

H, = -!pA,,Cd,,VIJV,

Coupling Relations and Boundary Conditions

We require that the velocity of the tether at its endpoint, defined as (u.,v.), be equal to

the velocity of the vehicle at the connection point (z', Ye). This gives the following pair of

expressions:

U, = [cost cos o + sin t sin •O]Uc + [costsino. - sin @coso]V (7.11)

Vo= (sin cos46. - cos'tsin4'.]U., + (sin'tsin'o, + cosecos4•.]V,

where the vehicle velocities at (z,, Yc) are:

Uo =
at

V, = V +-0zcat

The tether is assumed to be connected to both the ROV and the operator platform

by pinned joints. Therefore, there are no moments at either end. If we define the ROV

connection point to be located at 8 = 0 on the tether and the point where the tether

meets the operator platform at 8 = L (where L is the tether length), then we can write the

following boundary conditions:

-=0 at s=O,L (7.12)

In addition, the tether velocities at s = L must be prescribed.

134



7.2.2 Numerical Results

In this section we present the results of two simulations involving different vehicle maneu-

vers. In both simulations, the vehicle and tether are neutrally buoyant. For the vehicle,

we also assume that its center of buoyancy coincides with its center of gravity. Thus, the

gravitational terms in the equations of motion for the tether and vehicle are set equal to

zero. We assume that the tether attaches to the ROV at the vehicle's center of gravity,

and there is no moment due to the thrusters. This allows us to replace (7.5) with the

solution ' = constant. The end of the tether that attaches to the operator is assumed to

be stationary.

For each maneuver, a different vehicle was used (see table 7.1). The first simulation uses

a vehicle with a bluff-shaped body and incorporates the hydrodynamic model described by

(7.8)-(7.9). The second simulation involves a streamlined vehicle and, thus, incorporates

the alternate drag model given by (7.10).

Vehicle No. 1 Vehicle No. 2
Mass 360 kg 360 kg
CD, 1.0 0.2
CDv 1.0 1.4
A, 0.6 m 2  0.2 m 2

AL 0.6 m 2  1.2 m 2

Table 7.1: Characteristics of vehicle.

The characteristics of the tether used in the simulations are presented in table 7.2.

Length 100. m
Diameter 0.0114 m
Ct 0.015
C,, 2.0
E 200. GPa

Table 7.2: Characteristics of tether.

The tether and vehicle equations are approximated using a second-order, centered finite-

difference scheme [1]. The coupled system of equations is solved iteratively using the
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Figure 7.3: Applied thruster forces for simulation involving bluff-shaped body.

Newton-Raphson technique [55]. Further details on the simulation technique are supplied

by Moxnes [46].

For both simulations, the tether was approximated with 100 nodes, and a time step

of 0.025 seconds was used. This provided results in roughly three times real time on a

SiliconGraphics IRIS 4D. The sizes of the time step and node spacing are conservative and

were chosen to obtain smooth graphical renditions.

The first simulation consisted of applying the thrusters in such a way as to maneuver

a bluff-body vehicle in an orbit about the operator platform. There is no current present

so the hydrodynamic forces arise strictly from the motion of the tether and vehicle. The

prescribed thrust is shown by the time records in figure 7.3.

The results of the simulation are given in figure 7.4. The initial position of the tether is

given by the dashed line and marked by t = 0 s. As the simulation proceeds, a considerable

amount of curvature develops in the tether due to the hydrodynamic drag. If we examine
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Figure 7.4: Numerical results: Displacement of vehicle and tether for applied loads given
in figure 7.3.

the tension at the two end points of the tether and at the midpoint (at a = 0, 50, 100

meters), we see that the tension varies rapidly and at times approaches zero (figure 7.5.

The steep changes in tension are a characteristic of low-tension systems, as demonstrated

in previous chapters. The sudden decrease in tension followed by the gradual stiffening is

a function of the thruster action and the shape of the tether. It is within the low-tension

regions, that bending stiffness is required for numerical stability and physical accuracy.
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Figure 7.5: Numerical results: Tension at three locations along tether for applied loads
given in figure 7.3.

The second simulation involves a streamlined vehicle system directed into a 1 knot

current. Initially, the tether is parallel to the current and pulled taut by a constant in-line

thrust. Side thrust was then applied as shown in Figure 7.6. The tether configuration is

shown in figure 7.7, with t = 0 s denoting the initial condition. As readily seen (figure

7.8), the tether tension does not change appreciably during the simulation and as a result

only a small degree of curvature develops in the tether. The reason is that for streamlined

bodies, the in-line and transverse drag forces are effectively decoupled. Therefore, because

the vehicle's heading is maintained, the in-line drag forces and tension remain roughly

constant. This simulation shows that the same principles used to model low-tension systems

are applicable over a wide range of tension magnitudes.
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Figure 7.7: Numerical results: Displacement of vehicle and tether for applied loads given
in figure 7.6.
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Chapter 8

Conclusions and

Recommendations

Herein we have formulated the three-dimensional nonlinear equations of motion for a sub-

merged cable. The derivation of the equations can be viewed as a general formulation in that

all forces and moments are equated for a incremental cable segment. In the final form of the

equations, the effects of rotational inertia and torsion are neglected, under the assumption

that the contribution of these forces is small compared to other affects. However, the cable

bending stiffness must be retained in situations in which the cable tension approaches zero,

as the cable equations are singular for zero tension if flexural stiffness is neglected. From

a physical standpoint, bending stiffness provides the necessary mechanism by which energy

is transferred across a point of zero tension.

The numerical techniques presented have been shown to provide an effective means

for analyzing the nonlinear dynamics of low-tension cables and chains. Accuracy of the

algorithms has been demonstrated through comparisons with known analytic solutions, as

well as experimental data. Of particular note is the capability of modeling the highly

nonlinear behavior of a collapsing chain.

The mechanisms for building tension and velocities were investigated for low-tension

cables by considering the limiting case of a cable, initially at rest with zero tension, subjected

to an impulsive load at one end. It was shown that the impulse equations accurately describe
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the initial development of tension and velocity. It was found that the impulsive tension

distribution depends entirely on the local curvature of the cable, and is independent of the

geometric torsion. In addition, the tangential and normal velocities, expressed in terms

of the principle coordinate directions, also depend exclusively on the curvature, while the

binormal velocity remains constant.

Large rotational velocities were found to develop near regions of sharp transitions in

curvature. In cases where the curvature is discontinuous, a physically impossible disconti-

nuity occurs in the normal velocity. Introducing the cables bending stiffness ensures smooth

behavior of the solution, however, boundary layers are found to develop. These boundary

layers are sustained in time, demonstrating the intrinsic physical importance of the mech-

anism for low-tension cables.

The transition from high tension behavior to low tension behavior was investigated by

considering the nonlinear dynamics of a hanging chain, driven harmonically at the top

near resonance. Solutions were obtained using asymptotic, numerical, and experimental

means. Asymptotic solutions predict that for a fixed excitation amplitude, frequency regions

characterized by stable 2-D or 3-D response exist. In addition, a frequency region was

identified within which all steady-state solutions were determined to be unstable. The

width of this region was shown to increase monotonically with excitation level.

Numerical and experimental results were in close agreement with the asymptotic solu-

tions for stable motions, with respect to both the nature and the amplitude of the response.

Within the frequency range predicted by the asymptotic solution to provide unstable solu-

tions, it was found that the response is characterized by irregular beating.

For further increasing excitation amplitudes, the chain was found to lose tension over

a region near the free boundary for a short duration of time, after which the chain swings

back and intersects itself. Collapse of the chain at moderate excitation amplitudes was also

found to occur when the excitation frequency lies within the unstable frequency range and

damping is removed after starting transients decay to zero. The chain's collapse can be

also predicted by employing the asymptotic solution to determine the threshold response

amplitude above which the oscillatory tension exceeds in amplitude the static tension.

Numerical and experimental results were found to be in good agreement up to the point
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of collapse. By incorporating bending stiffness in the numerical model it was possible to

simulate the chain response through the entire period of zero tension and subsequent col-

lapse. Bending stiffness, although physically relevant only to wires, eliminates singularities

in the cable equations, when the tension becomes zero, both in the governing equations and,

especially, in the compatibility relations. When the value of the bending stiffness is properly

selected (to be sufficiently small), it serves primarily to smooth out the configuration, hence

ensuring stability of the solution, while affecting little the response.

Numerical results reveal large impulse-like tension peaks, characteristic of low tension

cables, which cause steep gradients in velocity and angle. The transition from low to high

tension regions is clearly demonstrated, with low tension effects being confined to the lower

portion of the chain. Beyond the low tension region the response is regular and the chain

behaves like a taut cable.

The impulse-like tension peaks exhibited in the hanging chain problem are characterized

by a broad-band frequency content. As such, the possibility does exist for exciting elastic

waves, providing sufficient energy exists near the fundamental frequency of elastic waves.

However, because the chain eventually collapses for large amplitude motions, the energy

content of the tension peaks is limited to a finite frequency region. Therefore, elastic waves

only develop for moderately low values of elastic stiffness. In situations where elastic waves

do develop, the waves are found to be stationary, resembling the linear solution for free-fixed

end conditions.

Future work is required to more completely understand the effects of elasticity. This is

an important topic considering the highly elastic character of synthetic cables. In particular,

the complicated interaction between transverse and elastic modes is not well understood.

The numerical techniques discribed herein could prove very useful for further investigation

of elastic behavior.
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